International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Recently updated IACR publications

CryptoDB is periodically updated by manual and automatic processes. Whenever a paper is added or modified it will appear in this list, e.g., when a video appears.

A separate history of changes tracks schema and process changes. There is further information about CryptoDB in the documentation.

Year
Venue
Title
2024
ASIACRYPT
Extractable Witness Encryption for KZG Commitments and Efficient Laconic OT
We present a concretely efficient and simple extractable witness encryption scheme for KZG polynomial commitments. It allows to encrypt a message towards a triple $(\mathsf{com}, \alpha, \beta)$, where $\mathsf{com}$ is a KZG commitment for some polynomial $f$. Anyone with an opening for the commitment attesting $f(\alpha) = \beta$ can decrypt, but without knowledge of a valid opening the message is computationally hidden. Our construction is simple and highly efficient. The ciphertext is only a single group element. Encryption and decryption both require a single pairing evaluation and a constant number of group operations. Using our witness encryption scheme, we construct a simple and highly efficient laconic OT protocol, which significantly outperforms the state of the art in most important metrics.
2024
TCC
Indistinguishability Obfuscation from Bilinear Maps and LPN Variants
We construct an indistinguishability obfuscation (IO) scheme from the sub-exponential hardness of the decisional linear problem on bilinear maps together with two variants of the learning parity with noise (LPN) problem, namely large-field LPN and (binary-field) sparse LPN. This removes the need to assume the existence of polynomial-stretch PRGs in $\mathsf{NC}^0$ from the state-of-the-art construction of IO (Jain, Lin, and Sahai, EUROCRYPT 2022). As an intermediate step in our construction, we abstract away a notion of structured-seed polynomial-stretch PRGs in $\mathsf{NC}^0$ which is implied by both sparse LPN and the existence of polynomial-stretch PRGs in $\mathsf{NC}^0$. As immediate applications, from the sub-exponential hardness of the decisional linear assumption on bilinear groups, large-field LPN, and sparse LPN, we get alternative constructions of (a) FHE without lattices or circular security assumptions (Canetti, Lin, Tessaro, and Vaikuntanathan, TCC 2015), and (b) perfect zero-knowledge adaptively-sound Succinct Non-interactive Arguments (SNARGs) for NP (Waters and Wu, STOC 2024).
2024
TCC
Towards general-purpose program obfuscation via local mixing
We explore the possibility of obtaining general-purpose obfuscation for all circuits by way of making only simple, local, functionality preserving random perturbations in the circuit structure. Towards this goal, we use the additional structure provided by reversible circuits, but no additional algebraic structure. Specifically: * We formulate a new (and relatively weak) obfuscation task regarding the ability to obfuscate random circuits of bounded length. We call such obfuscators random input & output (RIO) obfuscators. * We construct indistinguishability obfuscators for all (unbounded length) circuits given only an RIO obfuscator. We prove security of this construction under a new assumption regarding the pseudorandomness of sufficiently-long random reversible circuits with known functionality. This assumption builds on a conjecture made by Gowers (Comb. Prob. Comp. '96) regarding the pseudorandomness of bounded-size random reversible circuits and appears to be of independent interest. * We give candidate constructions of RIO obfuscators using only local, functionality preserving perturbations of the circuit structure. Our approach is rooted in statistical mechanics and can be thought of as locally ``thermalizing'' a circuit while preserving its functionality. We also provide arguments for security of the constructions and point to connections with the geometry of non-Abelian infinite groups. Given the power of program obfuscation, viability of the proposed approach would provide an alternative route to realizing almost all cryptographic tasks using the computational hardness of problems that are very different from standard ones. Furthermore, our specific candidate obfuscators are very simple and relatively efficient: the obfuscated version of an n-wire, m-gate (reversible) circuit with security parameter k has n wires and poly(n,k)*m gates. We hope that our initial exploration will motivate further study of this alternative path to program obfuscation.
2024
TCC
Sparse Linear Regression and Lattice Problems
Sparse linear regression (SLR) is a well-studied problem in statistics where one is given a design matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$ and a response vector $\mathbf{y} = \mathbf{X} \boldsymbol{\theta}^* + \mathbf{w}$ for a $k$-sparse vector $\boldsymbol{\theta}^*$ (that is, $\|\boldsymbol{\theta}^*\|_0 \leq k$) and small, arbitrary noise $\mathbf{w}$, and the goal is to find a $k$-sparse $\widehat{\boldsymbol{\theta}} \in \mathbb{R}^{n}$ that minimizes the mean squared prediction error $\frac{1}{m} \|\mathbf{X} \widehat{\boldsymbol{\theta}} - \mathbf{X} \boldsymbol{\theta}^*\|^2_2$. While $\ell_1$-relaxation methods such as basis pursuit, Lasso, and the Dantzig selector solve SLR when the design matrix is well-conditioned, no general algorithm is known, nor is there any formal evidence of hardness in an average-case setting with respect to all efficient algorithms. We give evidence of average-case hardness of SLR w.r.t. all efficient algorithms assuming the worst-case hardness of lattice problems. Specifically, we give an instance-by-instance reduction from a variant of the bounded distance decoding (BDD) problem on lattices to SLR, where the condition number of the lattice basis that defines the BDD instance is directly related to the restricted eigenvalue condition of the design matrix, which characterizes some of the classical statistical-computational gaps for sparse linear regression. Also, by appealing to worst-case to average-case reductions from the world of lattices, this shows hardness for a distribution of SLR instances; while the design matrices are ill-conditioned, the resulting SLR instances are in the identifiable regime. Furthermore, for well-conditioned (essentially) isotropic Gaussian design matrices, where Lasso is known to behave well in the identifiable regime, we show hardness of outputting any good solution in the unidentifiable regime where there are many solutions, assuming the worst-case hardness of standard and well-studied lattice problems.
2024
TCC
Bit Security: optimal adversaries, equivalence results, and a toolbox for computational/statistical security analysis
We investigate the notion of bit-security for decisional cryptographic properties, as originally proposed in (Micciancio & Walter, Eurocrypt 2018), and its main variants and extensions, with the goal clarifying the relation between different definitions, and facilitating their use. Specific contributions of this paper include: (1) identifying the optimal adversaries achieving the highest possible MW advantage, showing that they are deterministic and have a very simple threshold structure; (2) giving a simple proof that a competing definition proposed by (Watanabe & Yasunaga, Asiacrypt 2021) is actually equivalent to the original MW definition; and (3) developing tools for the use of the extended notion of computational-statistical bit-security introduced in (Li, Micciancio, Schultz & Sorrell, Crypto 2022), showing that it fully supports common cryptographic proof techniques like hybrid arguments and probability replacement theorems. On the technical side, our results are obtained by introducing a new notion of "fuzzy" distinguisher (which we prove equivalent to the "aborting" distinguishers of Micciancio and Walter), and a tight connection between the MW advantage and the Le Cam metric, a standard quantity used in statistics.
2024
TCC
General Adversary Structures in Byzantine Agreement and Multi-Party Computation with Active and Omission Corruption
Typical results in multi-party computation (in short, MPC) capture faulty parties by assuming a threshold adversary corrupting parties actively and/or fail-corrupting. These corruption types are, however, inadequate for capturing correct parties that might suffer temporary network failures and/or localized faults--these are particularly relevant for MPC over large, global scale networks. Omission faults and general adversary structures have been proposed as more suitable alternatives. However, to date, there is no characterization of the feasibility landscape combining the above ramifications of fault types and patterns. In this work we provide a tight characterization of feasibility of MPC in the presence of general adversaries--characterized by an adversary structure--that combine omission and active corruption. To this front we first provide a tight characterization of feasibility for Byzantine agreement (BA), a key tool in MPC protocols--this BA result can be of its own separate significance. Subsequently, we demonstrate that the common techniques employed in the threshold MPC literature to deal with omission corruptions do not work in the general adversary setting, not even for proving bounds that would appear straightforward, e.g, sufficiency of the well known $Q^3$ condition on omission-only general adversaries. Nevertheless we provide a new protocol that implements general adversary MPC under a surprisingly complex, yet tight as we prove, bound. All our results are for the classical synchronous model of computation. As a contribution of independent interest, our work puts forth, for the first time, a formal treatment of general-adversary MPC with (active and) omission corruptions in Canetti's universal composition framework.
2024
TCC
Low-degree Security of the Planted Random Subgraph Problem
The planted random subgraph detection conjecture of Abram et al. (TCC 2023) asserts the pseudorandomness of a pair of graphs $(H, G)$, where $G$ is an Erdos-Renyi random graph on $n$ vertices, and $H$ is a random induced subgraph of $G$ on $k$ vertices. Assuming the hardness of distinguishing these two distributions (with two leaked vertices), Abram et al. construct communication-efficient, computationally secure (1) 2-party private simultaneous messages (PSM) and (2) secret sharing for forbidden graph structures. We prove low-degree hardness of detecting planted random subgraphs all the way up to $k\leq n^{1 - \Omega(1)}$. This improves over Abram et al.'s analysis for $k \leq n^{1/2 - \Omega(1)}$. The hardness extends to $r$-uniform hypergraphs for constant $r$. Our analysis is tight in the distinguisher's degree, its advantage, and in the number of leaked vertices. Extending the constructions of Abram et al, we apply the conjecture towards (1) communication-optimal multiparty PSM protocols that are secure even against multiple random evaluations and (2) bit secret sharing with share size $(1 + \epsilon)\log n$ for any $\epsilon > 0$ in which arbitrary coalitions of up to $r$ parties can reconstruct and secrecy holds against all unqualified subsets of up to $\ell = o(\epsilon \log n)^{1/(r-1)}$ parties.
2024
TCC
Unclonable Cryptography with Unbounded Collusions and Impossibility of Hyperefficient Shadow Tomography
Quantum no-cloning theorem gives rise to the intriguing possibility of quantum copy protection where we encode a program or functionality in a quantum state such that a user in possession of k copies cannot create k + 1 copies, for any k. Introduced by Aaronson (CCC’09) over a decade ago, copy protection has proven to be notoriously hard to achieve. Previous work has been able to achieve copy-protection for various functionalities only in restricted models: (i) in the bounded collusion setting where k → k + 1 security is achieved for a-priori fixed collusion bound k (in the plain model with the same computational assumptions as ours, by Liu, Liu, Qian, Zhandry [TCC’22]), or, (ii) only k → 2k security is achieved (relative to a structured quantum oracle, by Aaronson [CCC’09]). In this work, we give the first unbounded collusion-resistant (i.e. multiple-copy secure) copy- protection schemes, answering the long-standing open question of constructing such schemes, raised by multiple previous works starting with Aaronson (CCC’09). More specifically, we obtain the following results. - We construct (i) public-keyencryption,(ii) public-keyfunctionalencryption,(iii) signature and (iv) pseudorandom function schemes whose keys are copy-protected against unbounded collusions in the plain model (i.e. without any idealized oracles), assuming (post-quantum) subexponentially secure iO and LWE. - We show that any unlearnable functionality can be copy-protected against unbounded collusions, relative to a classical oracle. - As a corollary of our results, we rule out the existence of hyperefficient quantum shadow tomography and hence answer an open question by Aaronson (STOC’18). We obtain our results through a novel technique which uses identity-based encryption to construct multiple copy secure copy-protection schemes from 1-copy → 2-copy secure schemes. We believe our technique is of independent interest. Along the way, we also obtain the following results. - We define and prove the security of new collusion-resistant monogamy-of-entanglement games for coset states. - We construct a classical puncturable functional encryption scheme whose master secret key can be punctured at all functions f such that f(m0) ̸= f(m1). This might also be of independent interest.
2024
TCC
Homomorphic Secret Sharing with Verifiable Evaluation
A homomorphic secret sharing (HSS) scheme allows a client to delegate a computation to a group of untrusted servers while achieving input privacy as long as at least one server is honest. In recent years, many HSS schemes have been constructed that have, in turn, found numerous applications to cryptography. Prior work on HSS focuses on the setting where the servers are semi-honest. In this work we lift HSS to the setting of malicious evaluators. We propose the notion of *HSS with verifiable evaluation* (ve-HSS) that guarantees correctness of output *even when all the servers are corrupted*. ve-HSS retains all the attractive features of HSS and adds the new feature of succinct (public) verification of output. We present *black-box* constructions of ve-HSS by devising generic transformations for semi-honest HSS schemes (with negligible error). This provides a new non-interactive method for verifiable and private outsourcing of computation.
2024
TCC
Unbounded Leakage-Resilience and Intrusion-Detection in a Quantum World
Can an adversary hack into our computer and steal sensitive data such as cryptographic keys? This question is almost as old as the Internet and significant effort has been spent on designing mechanisms to prevent and detect hacking attacks. Once quantum computers arrive, will the situation remain the same or can we hope to live in a better world? We first consider ubiquitous side-channel attacks, which aim to leak side information on secret system components, studied in the leakage-resilient cryptography literature. Classical leakage-resilient cryptography must necessarily impose restrictions on the type of leakage one aims to protect against. As a notable example, the most well-studied leakage model is that of bounded leakage, where it is assumed that an adversary learns at most l bits of leakage on secret components, for some leakage bound l. Although this leakage bound is necessary, many real-world side-channel attacks cannot be captured by bounded leakage. In this work, we design cryptographic schemes that provide guarantees against arbitrary side-channel attacks: • Using techniques from unclonable quantum cryptography, we design several basic leakage- resilient primitives, such as public- and private-key encryption, (weak) pseudorandom func- tions, digital signatures and quantum money schemes which remain secure under (polyno- mially) unbounded classical leakage. In particular, this leakage can be much longer than the (quantum) secret being leaked upon. In our view, leakage is the result of observations of quantities such as power consumption and hence is most naturally viewed as classi- cal information. Notably, the leakage-resilience of our schemes holds even in the stronger “LOCC leakage” model where the adversary can obtain adaptive leakage for (polynomially) unbounded number of rounds. • What if the adversary simply breaks into our system to steal our secret keys, rather than mounting only a side-channel attack? What if the adversary can even tamper with the data arbitrarily, for example to cover its tracks? We initiate the study of intrusion- detection in the quantum setting, where one would like to detect if security has been compromised even in the face of an arbitrary intruder attack which can leak and tamper with classical as well as quantum data. We design cryptographic schemes supporting intrusion detection for a host of primitives such as public- and private-key encryption, digital signature, functional encryption, program obfuscation and software protection. Our schemes are based on techniques from cryptography with secure key leasing and certified deletion
2024
TCC
Adaptive Security, Erasures, and Network Assumptions in Communication-Local MPC
The problem of reliable/secure all-to-all communication over low-degree networks has been essential for communication-local (CL) n-party MPC (i.e., MPC protocols where every party directly communicates only with a few, typically polylogarithmic in n, parties) and more recently for com- munication over ad hoc networks, which are used in blockchain protocols. However, a limited number of adaptively secure solutions exist, and they all make relatively strong assumptions on the ability of parties to act in some specific manner before the adversary can corrupt them. Two such assumptions were made in the work of Chandran et al. [ITCS ’15]---parties can (a) multisend messages to several receivers simultaneously; and (b) securely erase the message and the identities of the receivers, before the adversary gets a chance to corrupt the sender (even if a receiver is corrupted). A natural question to ask is: Are these assumptions necessary for adaptively secure CL MPC? In this paper, we characterize the feasibility landscape for all-to-all reliable message transmission (RMT) under these two assumptions, and use this characterization to obtain (asymptotically) tight feasibility results for CL MPC. – First, we prove a strong impossibility result for a broad class of RMT protocols, termed here store-and-forward protocols, which includes all known communication protocols for CL MPC from standard cryptographic assumptions. Concretely, we show that no such protocol with a certain expansion rate can tolerate a constant fraction of parties being corrupted. – Next, under the assumption of only a PKI, we show that assuming secure erasures, we can obtain an RMT protocol between all pairs of parties with polylogarithmic locality (even without assuming multisend) for the honest majority setting. We complement this result by showing a negative result for the setting of dishonest majority. – Finally, and somewhat surprisingly, under stronger assumptions (i.e., trapdoor permutations with a reverse domain sampler, and compact and malicious circuit-private FHE), we construct a polylogarithmic-locality all-to-one RMT protocol, which is adaptively secure and tolerates any constant fraction of corruptions, without assuming either secure erasures or multisend. This last result uses a novel combination of adaptively secure (e.g., non-committing) encryption and (static) FHE to bypass the impossibility of compact adaptively secure FHE by Katz et al. [PKC’13], which we believe may be of independent interest. Intriguingly, even such assumptions do not allow reduc- ing all-to-all RMT to all-to-one RMT (a reduction which is trivial in the non-CL setting). Still, we can implement what we call sublinear output-set RMT (SOS-RMT for short). We show how SOS- RMT can be used for SOS-MPC under the known bounds for feasibility of MPC in the standard (i.e., non-CL) setting assuming, in addition to SOS-RMT, an anonymous PKI.
2024
TCC
On the Black-Box Complexity of Private-Key Inner-Product Functional Encryption
We initiate the study of the black-box complexity of private- key functional encryption (FE). Of central importance in the private-key setting is the inner-product functionality, which is currently only known from assumptions that imply public-key encryption, such as Decisional Diffie-Hellman or Learning-with-Errors. As our main result, we rule out black-box constructions of private-key inner-product FE from random oracles. This implies a black-box separation between private-key inner- product FE from all symmetric-key primitives implied by random oracles (e.g., symmetric-key encryption, collision-resistant hash functions). Proving lower bounds for private-key functional encryption schemes introduces challenges that were absent in prior works. In particular, the combinatorial techniques developed by prior works for proving black-box lower bounds are only useful in the public-key setting and predicate encryption settings, which all fail for the private-key FE case. Our work develops novel combinatorial techniques based on Fourier analysis to overcome these barriers. We expect these techniques to be widely useful in future research in this area.
2024
TCC
Secret-Sharing Schemes for High Slices
In a secret-sharing scheme, a secret is shared among $n$ parties such that the secret can be recovered by authorized coalitions, while it should be kept hidden from unauthorized coalitions. In this work we study secret-sharing for $k$-slice access structures, in which coalitions of size $k$ are either authorized or not, larger coalitions are authorized and smaller are unauthorized. Known schemes for these access structures had smaller shares for small $k$'s than for large ones; hence our focus is on ``high'' $(n-k)$-slices where $k$ is small. Our work is inspired by several motivations: 1) Obtaining efficient schemes (with perfect or computational security) for natural families of access structures; 2) Making progress in the search for better schemes for general access structures, which are often based on schemes for slice access structures; 3) Proving or disproving the conjecture by Csirmaz (J. Math. Cryptol., 2020) that an access structures and its dual can be realized by secret-sharing schemes with the same share size. The main results of this work are: 1) Perfect schemes for high slices. We present a scheme for $(n-k)$-slices with information-theoretic security and share size $kn\cdot 2^{\tilde{O}(\sqrt{k \log n})}$. Using a different scheme with slightly larger shares, we prove that the ratio between the optimal share size of $k$-slices and that of their dual $(n-k)$-slices is bounded by $n$. 2) Computational schemes for high slices. We present a scheme for $(n-k)$-slices with computational security and share size $O(k^2 \lambda \log n)$ based on the existence of one-way functions. Our scheme makes use of a non-standard view point on Shamir secret-sharing schemes that allows to share many secrets with different thresholds with low cost. 3) Multislice access structures. \emph{$(a:b)$-multislices} are access structures that behave similarly to slices, but are unconstrained on coalitions in a wider range of cardinalities between $a$ and $b$. We use our new schemes for high slices to realize multislices with the same share sizes that their duals have today. This solves an open question raised by Applebaum and Nir (Crypto, 2021), and allows to realize hypergraph access structures that are chosen uniformly at random under a natural set of distributions with share size $2^{0.491n+o(n)}$ compared to the previous result of $2^{0.5n+o(n)}$.
2024
TCC
New Upper Bounds for Evolving Secret Sharing via Infinite Branching Programs
Evolving secret-sharing schemes, defined by Komargodski, Naor, and Yogev [TCC 2016B], are secret-sharing schemes in which there is no a-priory bound on the number of parties. In such schemes, parties arrive one by one; when a party arrives, the dealer gives it a share and cannot update this share in later stages. The requirement is that some predefined sets (called authorized sets) should be able to reconstruct the secret, while other sets should learn no information on the secret. The collection of authorized sets that can reconstruct the secret is called an evolving access structure. The challenge of the dealer is to be able to give short shares to the current parties without knowing how many parties will arrive in the future. The requirement that the dealer cannot update shares is designed to prevent expensive updates. Komargodski et al. constructed an evolving secret-sharing scheme for every monotone evolving access structure; the share size of the t-th party in this scheme is $2^{t-1}$. Recently, Mazor [ITC 2023] proved that evolving secret-sharing schemes require exponentially-long shares for some evolving access structures, namely shares of size $2^{t-o(t)}$. In light of these results, our goal is to construct evolving secret-sharing schemes with non-trivial share size for wide classes of evolving access structures; e.g., schemes with share size $2^{ct}$ for $c<1$ or even polynomial size. We provide several results achieving this goal: (1) We define layered infinite branching programs representing evolving access structures, show how to transform them into generalized infinite decision trees, and show how to construct evolving secret-sharing schemes for generalized infinite decision trees. Combining these steps, we get a secret-sharing scheme realizing the evolving access structure. As an application of this framework, we construct an evolving secret-sharing scheme with non-trivial share size for access structures that can be represented by layered infinite branching programs with width at layer $t$ of at most $2^{0.15t}$. If the width is polynomial, then we get an evolving secret-sharing scheme with quasi-polynomial share size. (2) We construct efficient evolving secret-sharing schemes for dynamic-threshold access structures with high dynamic-threshold and for infinite 2-slice and 3-slice access structures. (3) We prove lower bounds on the share size of evolving secret-sharing schemes for infinite $k$-hypergraph access structures and for infinite directed st-connectivity access structures. As a by-product of the lower bounds, we provide the first non-trivial lower bound for \emph{finite} directed st-connectivity access structures for general secret-sharing schemes.
2024
TCC
On Bounded Storage Key Agreement and One-Way Functions
We study key agreement in the bounded-storage model, where the participants and the adversary can use an a priori fixed bounded amount of space, and receive a large stream of data. While key agreement is known to exist unconditionally in this model (Cachin and Maurer, Crypto'97), there are strong lower bounds on the space complexity of the participants, round complexity, and communication complexity that unconditional protocols can achieve. In this work, we explore how a minimal use of cryptographic assumptions can help circumvent these lower bounds. We obtain several contributions: - Assuming one-way functions, we construct a one-round key agreement in the bounded-storage model, with arbitrary polynomial space gap between the participants and the adversary, and communication slightly larger than the adversarial storage. Additionally, our protocol can achieve everlasting security using a second streaming round. - In the other direction, we show that one-way functions are \emph{necessary} for key agreement in the bounded-storage model with large space gaps. We further extend our results to the setting of \emph{fully-streaming} adversaries, and to the setting of key agreement with multiple streaming rounds. Our results rely on a combination of information-theoretic arguments and technical ingredients such as pseudorandom generators for space-bounded computation, and a tight characterization of the space efficiency of known reductions between standard Minicrypt primitives (from distributional one-way functions to pseudorandom functions), which might be of independent interest.
2024
TCC
An Improvement Upon the Bounds for the Local Leakage Resiliance of Shamir's Secret Sharing Scheme
Shamir's Secret Sharing Scheme allows for the distribution of information amongst n parties so that any t of them can combine their information to recover the secret. By design, it is secure against the total corruption of (t-1) parties, but open questions remain around its security against side-channel attacks, where an adversary may obtain a small amount of information about each of the n party's shares. An initial result by Benhamouda, Degwekar, Ishai and Rabin showed that if n is sufficiently large and t \geq 0.907n, then the scheme was secure under one bit of local leakage. These bounds continued to be improved in following works, and most recently Klein and Komargodski introduced a proof using a new analytical proxy that showed leakage resilience for t \geq 0.69n. In this paper we will use the analytic proxy of Klein and Komargodski to show leakage resilience for t \geq 0.668. We do this by introducing two new bounds on the proxy. The first uses a result from additive combinatorics to improve their original bound on the proxy. The second is an averaging argument that exploits the rarity of worst-case bounds occurring.
2024
TCC
Composability in Watermarking Schemes
Software watermarking allows for embedding a mark into a piece of code, such that any attempt to remove the mark will render the code useless. Provably secure watermarking schemes currently seems limited to programs computing various cryptographic operations, such as evaluating pseudorandom functions (PRFs), signing messages, or decrypting ciphertexts (the latter often going by the name ``traitor tracing''). Moreover, each of these watermarking schemes has an ad-hoc construction of its own. We observe, however, that many cryptographic objects are used as building blocks in larger protocols. We ask: just as we can compose building blocks to obtain larger protocols, can we compose watermarking schemes for the building blocks to obtain watermarking schemes for the larger protocols? We give an affirmative answer to this question, by precisely formulating a set of requirements that allow for composing watermarking schemes. We use our formulation to derive a number of applications.
2024
TCC
On black-box separations of quantum digital signatures from pseudorandom states
It is well-known that digital signatures can be constructed from one-way functions in a black-box way. While one-way functions are essentially the minimal assumption in classical cryptography, this is not the case in the quantum setting. A variety of qualitatively weaker and inherently quantum assumptions (e.g. EFI pairs, one-way state generators, and pseudorandom states) are known to be sufficient for non-trivial quantum cryptography. While it is known that commitments, zero-knowledge proofs, and even multiparty computation can be constructed from these assumptions, it has remained an open question whether the same is true for quantum digital signatures schemes (QDS). In this work, we show that there does not exist a black-box construction of a QDS scheme with classical signatures from pseudorandom states with linear, or greater, output length. Our result complements that of Morimae and Yamakawa (2022), who described a one-time secure QDS scheme with classical signatures, but left open the question of constructing a standard multi-time secure one.
2024
TCC
Unclonable Commitments and Proofs
Non-malleable cryptography, proposed by Dolev, Dwork, and Naor (SICOMP '00), has numerous applications in protocol composition. In the context of proofs, it guarantees that an adversary who receives a proof cannot maul it into another valid proof. However, non-malleable cryptography (particularly in the non-interactive setting) suffers from an important limitation: An attacker can always copy the proof and resubmit it to another verifier (or even multiple verifiers). In this work, we prevent even the possibility of copying the proof as it is, by relying on quantum information. We call the resulting primitive unclonable proofs, making progress on a question posed by Aaronson. We also consider the related notion of unclonable commitments. We introduce formal definitions of these primitives that model security in various settings of interest. We also provide a near tight characterization of the conditions under which these primitives are possible, including a rough equivalence between unclonable proofs and public-key quantum money.
2024
TCC
Reducing the Share Size of Weighted Threshold Secret Sharing Schemes via Chow Parameters Approximation
A secret sharing scheme is a cryptographic primitive that allows a dealer to share a secret among a set of parties, so that only authorized subsets of them can recover it. The access structure of the scheme is the family of authorized subsets. In a weighted threshold access structure, each party is assigned a weight according to its importance, and the authorized subsets are those in which the sum of their weights is at least the threshold value. For these access structures, the share size of the best known secret sharing schemes is either linear on the weights or quasipolynomial on the number of parties, which leads to long shares, in general. In certain settings, a way to circumvent this efficiency problem is to approximate the access structure by another one that admits more efficient schemes. This work is dedicated to the open problem posed by this strategy: Finding secret sharing schemes with a good tradeoff between the efficiency and the accuracy of the approximation. We present a method to approximate weighted threshold access structures by others that admit schemes with small shares. This method is based on the techniques for the approximation of the Chow parameters developed by De et al. [Journal of the ACM, 2014]. Our method provides secret sharing schemes with share size $n^{1+o(1)}$, where $n$ is the number of parties, and whose access structure is \emph{close} to the original one. Namely, in this approximation the condition of being authorized or not is preserved for almost all subsets of parties. In addition, applying the recent results on computational secret sharing schemes by Applebaum et al. [STOC, 2023] we show that there exist computational secret sharing schemes whose security is based on the RSA assumption and whose share size is polylogarithmic in the number of parties.
2024
TCC
The Cost of Maintaining Keys in Dynamic Groups with Applications to Multicast Encryption and Group Messaging
In this work we prove lower bounds on the (communication) cost of maintaining a shared key among a dynamic group of users. Being ``dynamic'' means one can add and remove users from the group. This captures important protocols like multicast encryption (ME) and continuous group-key agreement (CGKA), which is the primitive underlying many group messaging applications. We prove our bounds in a combinatorial setting where the state of the protocol progresses in rounds. The state of the protocol in each round is captured by a set system, with each of its elements specifying a set of users who share a secret key. We show this combinatorial model implies bounds in symbolic models for ME and CGKA that capture, as building blocks, PRGs, PRFs, dual PRFs, secret sharing, and symmetric encryption in the setting of ME, and PRGs, PRFs, dual PRFs, secret sharing, public-key encryption, and key-updatable public-key encryption in the setting of CGKA. The models are related to the ones used by Micciancio and Panjwani (Eurocrypt'04) and Bienstock et al. (TCC'20) to analyze ME and CGKA, respectively. We prove -- using the Bollobas' Set Pairs Inequality -- that the cost (number of uploaded ciphertexts) for replacing a set of d users in a group of size n is \Omega(d*\ln(n/d)). Our lower bound is asymptotically tight and both improves on a bound of \Omega(d) by Bienstock et al. (TCC'20), and generalizes a result by Micciancio and Panjwani (Eurocrypt'04), who proved a lower bound of \Omega(\log(n)) for d=1.
2024
TCC
Rate-1 Zero-Knowledge Proofs from One-Way Functions
We show that every NP relation that can be verified by a bounded-depth polynomial-sized circuit, or a bounded-space polynomial-time algorithm, has a computational zero-knowledge proof (with statistical soundness) with communication that is only additively larger than the witness length. Our construction relies only on the minimal assumption that one-way functions exist. In more detail, assuming one-way functions, we show that every NP relation that can be verified in NC has a zero-knowledge proof with communication $|w|+poly(\lambda,\log(|x|))$ and relations that can be verified in SC have a zero-knowledge proof with communication $|w|+|x|^\epsilon \cdot poly(\lambda)$. Here $\epsilon>0$ is an arbitrarily small constant and \lambda denotes the security parameter. As an immediate corollary, we also get that any NP relation, with a size S verification circuit (using unbounded fan-in XOR, AND and OR gates), has a zero-knowledge proof with communication $S+poly(\lambda,\log(S))$. Our result improves on a recent result of Nassar and Rothblum (Crypto, 2022), which achieve length $(1+\epsilon) \cdot |w|+|x|^\epsilon \cdot poly(\lambda)$ for bounded-space computations, and is also considerably simpler. Building on a work of Hazay et al. (TCC 2023), we also give a more complicated version of our result in which the parties only make a black-box use of the one-way function, but in this case we achieve only an inverse polynomial soundness error.
2024
TCC
Multi-Authority Functional Encryption with Bounded Collusions from Standard Assumptions
Multi-Authority Functional Encryption (MAFE) [\textit{Chase, TCC'07; Lewko-Waters, Eurocrypt'11; Brakerski et al., ITCS'17}] is a popular generalization of functional encryption (FE) with the central goal of decentralizing the trust assumption from a single central trusted key authority to a group of multiple, \emph{independent and non-interacting}, key authorities. Over the last several decades, we have seen tremendous advances in new designs and constructions for FE supporting different function classes, from a variety of assumptions and with varying levels of security. Unfortunately, the same has not been replicated in the multi-authority setting. The current scope of MAFE designs is rather limited, with positive results only known for certain attribute-based functionalities or from general-purpose code obfuscation. This state-of-the-art in MAFE could be explained in part by the implication provided by Brakerski et al. (ITCS'17). It was shown that a general-purpose obfuscation scheme can be designed from any MAFE scheme for circuits, even if the MAFE scheme is secure only in a bounded-collusion model, where at most \emph{two} keys per authority get corrupted. In this work, we revisit the problem of MAFE and show that existing implication from MAFE to obfuscation is not tight. We provide new methods to design MAFE for circuits from simple and minimal cryptographic assumptions. Our main contributions are summarized below- \begin{enumerate} \item We design a $\poly(\lambda)$-authority MAFE for circuits in the bounded-collusion model. Under the existence of public-key encryption, we prove it to be statically simulation-secure. Further, if we assume sub-exponential security of public-key encryption, then we prove it to be adaptively simulation-secure in the Random Oracle Model. \item We design a $O(1)$-authority MAFE for circuits in the bounded-collusion model. Under the existence of 2-party or 3-party non-interactive key exchange and public-key encryption, we prove it to be adaptively simulation-secure. \item We provide a new generic bootstrapping compiler for MAFE for general circuits to design a simulation-secure $(n_1 + n_2)$-authority MAFE from any two $n_1$-authority and $n_2$-authority MAFE. \end{enumerate}
2024
TCC
Compact Key Storage in the Standard Model
In recent work [Crypto'24], Dodis, Jost, and Marcedone introduced Compact Key Storage (CKS) as a modern approach to backup for end-to-end (E2E) secure applications. As most E2E-secure applications rely on a sequence of secrets (s_1,...,s_n) from which, together with the ciphertexts sent over the network, all content can be restored, Dodis et al.\ introduced CKS as a primitive for backing up (s_1,...,s_n). The authors provided definitions as well as two practically efficient schemes (with different functionality-efficiency trade-offs). Both, their security definitions and schemes relied however on the random oracle model (ROM). In this paper, we first show that this reliance is inherent. More concretely, we argue that in the standard model, one cannot have a general CKS instantiation that is applicable to all "CKS-compatible games", as defined by Dodis et al., and realized by their ROM construction. Therefore, one must restrict the notion of CKS-compatible games to allow for standard model CKS instantiations. We then introduce an alternative standard-model CKS definition that makes concessions in terms of functionality (thereby circumventing the impossibility). More precisely, we specify CKS which does not recover the original secret s_i but a derived key k_i, and then observe that this still suffices for many real-world applications. We instantiate this new notion based on minimal assumptions. For passive security, we provide an instantiation based on one-way functions only. For stronger notions, we additionally need collision-resistant hash functions and dual-PRFs, which we argue to be minimal. Finally, we provide a modularization of the CKS protocols of Dodis et al. In particular, we present a unified protocol (and proof) for standard-model equivalents for both protocols introduced in the original work.
2024
TCC
On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols
We consider the problem of electing a leader among $n$ parties with the guarantee that each (honest) party has a reasonable probability of being elected, even in the presence of a coalition that controls a subset of parties, trying to bias the output. This notion is called ``game-theoretic fairness'' because such protocols ensure that following the honest behavior is an equilibrium and also the best response for every party and coalition. In the two-party case, Blum's commit-and-reveal protocol (where if one party aborts, then the other is declared the leader) satisfies this notion and it is also known that one-way functions are necessary. Recent works study this problem in the multi-party setting. They show that composing Blum's 2-party protocol for $\log n$ rounds in a tournament-tree-style manner results with {perfect game-theoretic fairness}: each honest party has probability $\ge 1/n$ of being elected as leader, no matter how large the coalition is. Logarithmic round complexity is also shown to be necessary if we require perfect fairness against a coalition of size $n-1$. Relaxing the above two requirements, i.e., settling for approximate game-theoretic fairness and guaranteeing fairness against only constant fraction size coalitions, it is known that there are $O(\log ^* n)$ round protocols. This leaves many open problems, in particular, whether one can go below logarithmic round complexity by relaxing only one of the strong requirements from above. We manage to resolve this problem for commit-and-reveal style protocols, showing that \begin{itemize} \item $\Omega(\log n/\log\log n)$ rounds are necessary if we settle for approximate fairness against very large (more than constant fraction) coalitions; \item $\Omega(\log n)$ rounds are necessary if we settle for perfect fairness against $n^\epsilon$ size coalitions (for any constant $\epsilon>0$). \end{itemize} These show that both relaxations made in prior works are necessary to go below logarithmic round complexity. Lastly, we provide several additional upper and lower bounds for the case of single-round commit-and-reveal style protocols.
2024
TCC
Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing
We present a new approach to garbling arithmetic circuits using techniques from homomorphic secret sharing, obtaining constructions with high rate that support free addition gates. In particular, we build upon non-interactive protocols for computing distributed discrete logarithms in groups with an easy discrete-log subgroup, further demonstrating the versatility of tools from homomorphic secret sharing. Relying on distributed discrete log for the Damgård-Jurik cryptosystem (Roy and Singh, Crypto'21), whose security follows from the decisional composite residuosity assumption (DCR), we get the following main results: 1) [Two ciphertexts per multiplication, from IND-CPA security of Damgård-Jurik.] Assuming the Damgård-Jurik cryptosystem is semantically secure (which follows from DCR), there is a garbling scheme for circuits with B-bounded integer arithmetic using only two ciphertexts per multiplication. The total bit-size of the resulting garbled circuit is: $(n + 2s_\times+2D_\times)\cdot (\zeta + 1) \cdot \log N$, where n is the number of inputs, $s_\times$ is the number of multiplications, $D_\times$ is the multiplicative depth of the circuit, N is an RSA modulus and $N^{\zeta-1}$ is a rough bound on the magnitude of wire values in the computation. 2) [One ciphertext per multiplication, from KDM security of Damgård-Jurik.] Assuming the Damgård-Jurik encryption scheme remains secure given encryption of the key and its inverse, the construction achieves rate-1. The total bit-size of the resulting garbled circuit is: $(n + s_\times + 1) \cdot (\zeta + 1) \cdot \log N$, where the parameters are as above, except $N^{\zeta-2}$ is the magnitude bound.
2024
TCC
Cryptography in the Common Haar State Model: Feasibility Results and Separations
Common random string model is a popular model in classical cryptography. We study a quantum analogue of this model called the common Haar state (CHS) model. In this model, every party participating in the cryptographic system receives many copies of one or more i.i.d Haar random states. We study feasibility and limitations of cryptographic primitives in this model and its variants: 1) We present a construction of pseudorandom function-like states, that is optimal in terms of its query bound, with statistical security. As a consequence, by suitably instantiating the CHS model, we obtain a new approach to construct pseudorandom function-like states in the plain model. 2) We present new separations between pseudorandom function-like states (with super logarithmic length) and quantum cryptographic primitives, such as interactive key agreement and bit commitment, with classical communication. To show these separations, we show the indistinguishability of identical versus independent Haar states against LOCC (local operations, classical communication) adversaries.
2024
TCC
The Brave New World of Global Generic Groups and UC-Secure Zero-Overhead SNARKs
The universal composability (UC) model provides strong security guarantees for protocols used in arbitrary contexts. While these guarantees are highly desirable, in practice, schemes with a standalone proof of security, such as the Groth16 proof system, are preferred. This is because UC security typically comes with undesirable overhead, sometimes making UC-secure schemes significantly less efficient than their standalone counterparts. We establish the UC security of Groth16 without any significant overhead. In the spirit of global random oracles, we design a global (restricted) observable generic group functionality that models a natural notion of observability: computations that trace back to group elements derived from generators of other sessions are observable. This notion turns out to be surprisingly subtle to formalize. We provide a general framework for proving protocols secure in the presence of global generic groups, which we then apply to Groth16.
2024
TCC
Statistical Layered MPC
The seminal work of Rabin and Ben-Or (STOC '89) showed that the problem of secure $n$-party computation can be solved for $t<n/2$ corruptions with guaranteed output delivery and statistical security. This holds in the traditional static model where the set of parties is fixed throughout the entire protocol execution. The need to better capture the dynamics of large scale and long-lived computations, where compromised parties may recover and the set of parties can change over time, has sparked renewed interest in the proactive security model by Ostrovsky and Yung (PODC '91). This abstraction, where the adversary may periodically uncorrupt and corrupt a new set of parties, is taken even a step further in the more recent YOSO and Fluid MPC models (CRYPTO '21) which allow, in addition, disjoint sets of parties participating in each round. Previous solutions with guaranteed output delivery and statistical security only tolerate $t<n/3$ corruptions, or assume a random corruption pattern plus non-standard communication models. Matching the Rabin and Ben-Or bound in these settings remains an open problem. In this work, we settle this question considering the unifying Layered MPC abstraction recently introduced by David et al. (CRYPTO '23). In this model, the interaction pattern is defined by a layered acyclic graph, where each party sends secret messages and broadcast messages only to parties in the very next layer. We complete the feasibility landscape of layered MPC, by extending the Rabin and Ben-Or result to this setting. Our results imply maximally-proactive MPC with statistical security in the honest-majority setting.
2024
TCC
Efficient Secure Communication Over Dynamic Incomplete Networks With Minimal Connectivity
We study the problem of implementing unconditionally secure reliable and private communication (and hence secure computation) in dynamic incomplete networks. Our model assumes that the network is always k-connected, for some k, but the concrete connection graph is adversarially chosen in each round of interaction. We show that, with n players and t malicious corruptions, perfectly secure communication is possible if and only if k > 2t. This disproves a conjecture from earlier work, that k > 3t is necessary. Our new protocols are much more efficient than previous work; in particular, we improve the round and communication complexity by an exponential factor (in n) in both the semi-honest and the malicious corruption setting, leading to protocols with polynomial complexity.
2024
TCC
Doubly-Efficient Batch Verification in Statistical Zero-Knowledge
A sequence of recent works, concluding with Mu et al. (Eurocrypt, 2024) has shown that every problem $\Pi$ admitting a non-interactive statistical zero-knowledge proof (NISZK) has an efficient zero-knowledge \emph{batch verification} protocol. Namely, an NISZK protocol for proving that $x_1, \dots, x_k \in \Pi$ with communication that only scales poly-logarithmically with $k$. A caveat of this line of work is that the prover runs in exponential-time, whereas for NP problems it is natural to hope to obtain a \emph{doubly-efficient proof} -- that is, a prover that runs in polynomial-time given the $k$ NP witnesses. In this work we show that every problem in NISZK $\cap$ UP has a \emph{doubly-efficient} interactive statistical zero-knowledge proof with communication $\poly(n, \log(k))$ and $\poly(\log(k), \log(n))$ rounds. The prover runs in time $\poly(n, k)$ given access to the $k$ UP witnesses. Here $n$ denotes the length of each individual input, and UP is the subclass of NP relations in which YES instances have unique witnesses. This result yields doubly-efficient statistical zero-knowledge batch verification protocols for a variety of concrete and central cryptographic problems from the literature.
2024
TCC
Adaptively Secure Attribute-Based Encryption from Witness Encryption
Attribute-based encryption (ABE) enables fine-grained control over which ciphertexts various users can decrypt. A master authority can create secret keys $\sk_f$ with different functions (circuits) $f$ for different users. Anybody can encrypt a message under some attribute $x$ so that only recipients with a key $\sk_f$ for a function such that $f(x)=1$ will be able to decrypt. There are a number of different approaches toward achieving selectively secure ABE, where the adversary has to decide on the challenge attribute $x$ ahead of time before seeing any keys, including constructions via bilinear maps (for NC1 circuits), learning with errors, or witness encryption. However, when it comes adaptively secure ABE, the problem seems to be much more challenging and we only know of two potential approaches: via the ``dual systems'' methodology from bilinear maps, or via indistinguishability obfuscation. In this work, we give a new approach that constructs adaptively secure ABE from witness encryption (along with statistically sound NIZKs and one-way functions). While witness encryption is a strong assumption, it appears to be fundamentally weaker than indistinguishability obfuscation. Moreover, we have candidate constructions of witness encryption from some assumptions (e.g., evasive LWE) from which we do not know how to construct indistinguishability obfuscation, giving us adaptive ABE from these assumptions as a corollary of our work.
2024
TCC
Consensus in the Presence of Overlapping Faults and Total Omission
Understanding the fault tolerance of Byzantine Agreement protocols is an important question in distributed computing. While the setting of Byzantine faults has been thoroughly explored in the literature, the (arguably more realistic) omission fault setting is far less studied. In this paper, we revisit the recent work of Loss and Stern who gave the first protocol in the mixed fault model tolerating t Byzantine faults, s send faults, and r receive faults, when 2t+r+s<n and omission faults do not overlap. We observe that their protocol makes no guarantees when omission faults can overlap, i.e., when parties can simultaneously have send and receive faults. We give the first protocol that overcomes this limitation and tolerates the same number of potentially overlapping faults. We then study, for the first time, the total omission setting where all parties can become omission faulty. This setting is motivated by real-world scenarios where every party may experience connectivity issues from time to time, yet agreement should still hold for the parties who manage to output values. We show the first agreement protocol in this setting with parameters s<n and s+r=n. On the other hand, we prove that there is no consensus protocol for the total omission setting which tolerates even a single overlapping omission fault, i.e., where s+r=n+1 and s>2, or a broadcast protocol for s+r=n and s>1 even without overlapping faults.
2024
TCC
Batching Adaptively-Sound SNARGs for NP
A succinct non-interactive argument (SNARG) for NP allows a prover to convince a verifier that an NP statement $x$ is true with a proof whose size is sublinear in the length of the traditional NP witness. Moreover, a SNARG is adaptively sound if the adversary can choose the statement it wants to prove after seeing the scheme parameters. Very recently, Waters and Wu (STOC 2024) showed how to construct adaptively-sound SNARGs for NP in the plain model from falsifiable assumptions (specifically, sub-exponentially secure indistinguishability obfuscation, sub-exponentially secure one-way functions, and polynomial hardness of discrete log). We consider the batch setting where the prover wants to prove a collection of $T$ statements $x_1, \ldots, x_T$ and its goal is to construct a proof whose size is sublinear in both the size of a single witness and the number of instances $T$. In this setting, existing constructions either require the size of the public parameters to scale linearly with $T$ (and thus, can only support an a priori bounded number of instances), or only provide non-adaptive soundness, or have proof size that scales linearly with the size of a single NP witness. In this work, we give two approaches for batching adaptively-sound SNARGs for NP, and in particular, show that under the same set of assumptions as those underlying the Waters-Wu adaptively-sound SNARG, we can obtain an adaptively-sound SNARG for batch NP where the size of the proof is $\mathsf{poly}(\lambda)$ and the size of the CRS is $\mathsf{poly}(\lambda + |C|)$, where $\lambda$ is a security parameter and $|C|$ is the size of the circuit that computes the associated NP relation. Our first approach builds directly on top of the Waters-Wu construction and relies on indistinguishability obfuscation and a homomorphic re-randomizable one-way function. Our second approach shows how to combine ideas from the Waters-Wu SNARG with the chaining-based approach by Garg, Sheridan, Waters, and Wu (TCC 2022) to obtain a SNARG for batch NP.
2024
TCC
Asynchronous Agreement on a Core Set in Constant Expected Time and More Efficient Asynchronous VSS and MPC
A major challenge of any asynchronous MPC protocol is the need to reach an agreement on the set of private inputs to be used as input for the MPC functionality. Ben-Or, Canetti and Goldreich [STOC 93] call this problem Agreement on a Core Set (ACS) and solve it by running n parallel instances of asynchronous binary Byzantine agreements. To the best of our knowledge, all results in the perfect and statistical security setting used this same paradigm for solving ACS. Using all known asynchronous binary Byzantine agreement protocols, this type of ACS has Omega(log n) expected round complexity, which results in such a bound on the round complexity of MPC protocols as well (even for constant depth circuits). We provide a new solution for Agreement on a Core Set that runs in expected O(1) rounds. Our perfectly secure variant is optimally resilient (t<n/4) and requires just O(n^4 log n) expected communication complexity. We show a similar result with statistical security for t<n/3. Our ACS is based on a new notion of Asynchronously Validated Asynchronous Byzantine Agreement (AVABA) and new information-theoretic analogs to techniques used in the authenticated model. Along the way, we also construct a new perfectly secure packed asynchronous verifiable secret sharing (AVSS) protocol with just O(n^3 log n) communication complexity, improving the state of the art by a factor of O(n). This leads to a more efficient asynchronous MPC that matches the state-of-the-art synchronous MPC. We provide a new solution for Agreement on a Core Set that runs in expected O(1) rounds. Our perfectly secure variant is optimally resilient (t<n/4) and requires just O(n^4 log n) expected communication complexity. We show a similar result with statistical security for t<n/3. Our ACS is based on a new notion of Asynchronously Validated Asynchronous Byzantine Agreement (AVABA) and new information-theoretic analogs to techniques used in the authenticated model. Along the way, we also construct a new perfectly secure packed asynchronous verifiable secret sharing (AVSS) protocol with just O(n^3 log n) communication complexity, improving the state of the art by a factor of O(n). This leads to a more efficient asynchronous MPC that matches the state-of-the-art synchronous MPC.
2024
TCC
Instance-Hiding Interactive Proofs
In an Instance-Hiding Interactive Proof (IHIP) [Beaver et al. CRYPTO 90], an efficient verifier with a _private_ input x interacts with an unbounded prover to determine whether x is contained in a language L. In addition to completeness and soundness, the instance-hiding property requires that the prover should not learn anything about x in the course of the interaction. Such proof systems capture natural privacy properties, and may be seen as a generalization of the influential concept of Randomized Encodings [Ishai et al. FOCS 00, Applebaum et al. FOCS 04, Agrawal et al. ICALP 15], and as a counterpart to Zero-Knowledge proofs [Goldwasser et al. STOC 89]. We investigate the properties and power of such instance-hiding proofs, and show the following: 1. Any language with an IHIP is contained in NP/poly and coNP/poly. 2. If an average-case hard language has an IHIP, then One-Way Functions exist. 3. There is an oracle with respect to which there is a language that has an IHIP but not an SZK proof. 4. IHIP's are closed under composition with any efficiently computable function. We further study a stronger version of IHIP (that we call Simulatable IHIP) where the view of the honest prover can be efficiently simulated. For these, we obtain stronger versions of some of the above: 5. Any language with a Simulatable IHIP is contained in AM and coAM. 6. If a _worst-case_ hard language has a Simulatable IHIP, then One-Way Functions exist.
2024
TCC
Real-Valued Somewhat-Pseudorandom Unitaries
We explore a very simple distribution of unitaries: random (binary) phase -- Hadamard -- random (binary) phase -- random computational-basis permutation. We show that this distribution is statistically indistinguishable from random Haar unitaries for any polynomial set of orthogonal input states (in any basis) with polynomial multiplicity. This shows that even though real-valued unitaries cannot be completely pseudorandom (Haug, Bharti, Koh, arXiv:2306.11677), we can still obtain some pseudorandom properties without giving up on the simplicity of a real-valued unitary. Our analysis shows that an even simpler construction: applying a random (binary) phase followed by a random computational-basis permutation, would suffice, assuming that the input is orthogonal and \emph{flat} (that is, has high min-entropy when measured in the computational basis). Using quantum-secure one-way functions (which imply quantum-secure pseudorandom functions and permutations), we obtain an efficient cryptographic instantiation of the above.
2024
TCC
Robust Combiners and Universal Constructions for Quantum Cryptography
A robust combiner combines many candidates for a cryptographic primitive and generates a new candidate for the same primitive. Its correctness and security hold as long as one of the original candidates satisfies correctness and security. A universal construction is a closely related notion to a robust combiner. A universal construction for a primitive is an explicit construction of the primitive that is correct and secure as long as the primitive exists. It is known that a universal construction for a primitive can be constructed from a robust combiner for the primitive in many cases. Although robust combiners and universal constructions for classical cryptography are widely studied, robust combiners and universal constructions for quantum cryptography have not been explored so far. In this work, we define robust combiners and universal constructions for several quantum cryptographic primitives including one-way state generators, public-key quantum money, quantum bit commitments, and unclonable encryption, and provide constructions of them. On a different note, it was an open problem how to expand the plaintext length of unclonable encryption. In one of our universal constructions for unclonable encryption, we can expand the plaintext length, which resolves the open problem.
2024
TCC
Worst-Case to Average-Case Hardness of LWE: An Alternative Perspective
In this work, we study the worst-case to average-case hardness of the Learning with Errors problem (LWE) under an alternative measure of hardness − the maximum success probability achievable by a probabilistic polynomial-time (PPT) algorithm. Previous works by Regev (STOC 2005), Peikert (STOC 2009), and Brakerski, Peikert, Langlois, Regev, Stehle (STOC 2013) give worst-case to average-case reductions from lattice problems to LWE, specifically from the approximate decision variant of the Shortest Vector Problem (GapSVP) and the Bounded Distance Decoding (BDD) problem. These reductions, however, are lossy in the sense that even the strongest assumption on the worst-case hardness of GapSVP or BDD implies only mild hardness of LWE. Our alternative perspective gives a much tighter reduction and strongly relates the hardness of LWE to that of BDD. In particular, we show that under a reasonable assumption about the success probability of solving BDD via a PPT algorithm, we obtain a nearly tight lower bound on the highest possible success probability for solving LWE via a PPT algorithm. Furthermore, we show a tight relationship between the best achievable success probability by any PPT algorithm for decision-LWE to that of search-LWE. Our results not only refine our understanding of the computational complexity of LWE, but also provide a useful framework for analyzing the practical security implications.
2024
ASIACRYPT
Mind the Bad Norms: Revisiting Compressed Oracle-based Quantum Indistinguishability Proofs
In this work, we revisit the Hosoyamada-Iwata (HI) proof for the quantum CPA security of the 4-round Luby-Rackoff construction and identify a gap that appears to undermine the security proof. We emphasize that this is not an attack, and the construction may still achieve the claimed security level. However, this gap raises concerns about the feasibility of establishing a formal security proof for the 4-round Luby-Rackoff construction. In fact, the issue persists even if the number of rounds is increased arbitrarily. On a positive note, we restore the security of the 4-round Luby-Rackoff construction in the non-adaptive setting, achieving security up to $2^{n/6}$ superposition queries. Furthermore, we establish the quantum CPA security of the 4-round MistyR and 5-round MistyL constructions, up to $2^{n/5}$ and $2^{n/7}$ superposition queries, respectively, where $n$ denotes the size of the underlying permutation.
2024
TCC
Key-Homomorphic and Aggregate Verifiable Random Functions
A verifiable random function (VRF) allows one to compute a random-looking image, while at the same time providing a unique proof that the function was evaluated correctly. VRFs are a cornerstone of modern cryptography and, among other applications, are at the heart of recently proposed proof-of-stake consensus protocols. In this work we initiate the formal study of \emph{aggregate VRFs}, i.e., VRFs that allow for the aggregation of proofs/images into a small digest, whose size is \emph{independent} of the number of input proofs/images, yet it still enables sound verification. We formalize this notion along with its security properties and we propose two constructions: The first scheme is conceptually simple, concretely efficient, and uses (asymmetric) bilinear groups of prime order. Pseudorandomness holds in the random oracle model and aggregate pseudorandomness is proven in the algebraic group model. The second scheme is in the standard model and it is proven secure against the learning with errors (LWE) problem. As a cryptographic building block of independent interest, we introduce the notion of \emph{key homomorphic VRFs}, where the verification keys and the proofs are endowed with a group structure. We conclude by discussing several applications of key-homomorphic and aggregate VRFs, such as distributed VRFs and aggregate proof-of-stake protocols.
2024
TCC
Quantum Key-Revocable Dual-Regev Encryption, Revisited
Quantum information can be used to achieve novel cryptographic primitives that are impossible to achieve classically. A recent work by Ananth, Poremba, Vaikuntanathan (TCC 2023) focuses on equipping the dual-Regev encryption scheme, introduced by Gentry, Peikert, Vaikuntanathan (STOC 2008), with key revocation capabilities using quantum information. They further showed that the key-revocable dual-Regev scheme implies the existence of fully homomorphic encryption and pseudorandom functions, with both of them also equipped with key revocation capabilities. Unfortunately, they were only able to prove the security of their schemes based on new conjectures and left open the problem of basing the security of key revocable dual-Regev encryption on well-studied assumptions. In this work, we resolve this open problem. Assuming polynomial hardness of learning with errors (over sub-exponential modulus), we show that key-revocable dual-Regev encryption is secure. As a consequence, for the first time, we achieve the following results: -Key-revocable public-key encryption and key-revocable fully-homomorphic encryption satisfying classical revocation security and based on polynomial hardness of learning with errors. Prior works either did not achieve classical revocation or were based on sub-exponential hardness of learning with errors. -Key-revocable pseudorandom functions satisfying classical revocation from the polynomial hardness of learning with errors. Prior works relied upon unproven conjectures.
2024
TCC
Lower Bounds for Levin–Kolmogorov Complexity
The hardness of Kolmogorov complexity is intricately connected to the existence of oneway functions and derandomization. An important and elegant notion is Levin’s version of Kolmogorov complexity, Kt, and its decisional variant, MKtP. The question whether MKtP can be computed in polynomial time is particularly interesting because it is not subject to known technical barriers such as algebrization or natural proofs that would explain the lack of a proof for MKtP ∉ P. We take a major step towards proving MKtP ∉ P by developing a novel yet simple diagonalization technique to show unconditionally that MKtP ∉ DTIME[O(n)], i.e., no deterministic algorithm can solve MKtP on every instance. This allows us to affirm a conjecture by Ren and Santhanam [STACS22] about a non-halting variant of Kt complexity. Additionally, we give conditional lower bounds for MKtP that tolerate either more runtime or one-sided error.
2024
TCC
The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing
Proofs of partial knowledge, first considered by Cramer, Dam\-gård and Schoenmakers (CRYPTO'94) and De Santis et al. (FOCS'94), allow for proving the validity of $k$ out of $n$ different statements without revealing which ones those are. In this work, we present a new approach for transforming certain proofs system into new ones that allows for proving partial knowledge. The communication complexity of the resulting proof system only depends logarithmically on the total number of statements $n$ and its security only relies on the existence of collision-resistant hash functions. As an example, we show that our transformation is applicable to the proof systems of Goldreich, Micali, and Wigderson (FOCS'86) for the graph isomorphism and the graph 3-coloring problem. Our main technical tool, which we believe to be of independent interest, is a new cryptographic primitive called non-adaptively programmable functions (NAPs). Those functions can be seen as pseudorandom functions which allow for re-programming the output at an input point, which must be fixed during key generation. Even when given the re-programmed key, it remains infeasible to find out where re-programming happened. Finally, as an additional technical tool, we also build explainable samplers for any distribution that can be sampled efficiently via rejection sampling and use them to construct NAPs for various output distributions.
2024
TCC
Secure Computation with Parallel Calls to 2-ary Functions
Reductions are the workhorses of cryptography. They allow constructions of complex cryptographic primitives from simple building blocks. A prominent example is the non-interactive reduction from securely computing a ``complex" function f to securely computing a ``simple" function g via randomized encodings. Prior work equated simplicity with functions of small degree. In this work, we consider a different notion of simplicity where we require g to only take inputs from a small number of parties. In other words, we want the arity of g to be as small as possible. In more detail, we consider the problem of reducing secure computation of arbitrary functions to secure computation of functions with arity two (two is the minimal arity required to compute non-trivial functions). Specifically, we want to compute a function f via a protocol that makes parallel calls to a 2-ary function g. We want this protocol to be secure against malicious adversaries that could corrupt an arbitrary number of parties. We obtain the following results: - Negative Result: We show that there exists a degree-2 polynomial p such that no protocol that makes parallel calls to 2-ary functions can compute p with statistical security with abort. - Positive Results: We give two ways to bypass the above impossibility result. 1. Weakening the Security Notion. We show that every degree-2 polynomial can be computed with statistical privacy with knowledge of outputs (PwKO) by making parallel calls to a 2-ary function. Privacy with knowledge of outputs is weaker than security with abort. 2. Computational Security. We prove that for every function f, there exists a protocol for computing f that makes parallel calls to a 2-ary function and achieves security with abort against computationally-bounded adversaries. The security of this protocol relies on the existence of semi-honest secure oblivious transfer. - Applications: We give connections between this problem and the task of reducing the encoding complexity of Multiparty Randomized Encodings (MPRE) (Applebaum, Brakerski, and Tsabary, TCC 2018). Specifically, we show that under standard computational assumptions, there exists an MPRE where the encoder can be implemented by an NC0 circuit with constant fan-out. - Extensions: We explore this problem in the honest majority setting and give similar results assuming one-way functions. We also show that if the parties have access to 3-ary functions then we can construct a computationally secure protocol in the dishonest majority setting assuming one-way functions.
2024
TCC
Information-Theoretic Multi-Server Private Information Retrieval with Client Preprocessing
A private information retrieval (PIR) protocol allows a client to fetch any entry from single or multiple servers who hold a public database (of size $n$) while ensuring no server learns any information about the client's query. Initial works on PIR were focused on reducing the communication complexity of PIR schemes. However, standard PIR protocols are often impractical to use in applications involving large databases, due to its inherent large server-side computation complexity, that's at least linear in the database size. Hence, a line of research has focused on considering alternative PIR models that can achieve improved server complexity. The model of private information retrieval with client prepossessing has received a lot of interest beginning with the work due to Corrigan-Gibbs and Kogan (Eurocrypt 2020). In this model, the client interacts with two servers in an offline phase and it stores a local state, which it uses in the online phase to perform PIR queries. Constructions in this model achieve online client/server computation and bandwidth that's sublinear in the database size, at the cost of a one-time expensive offline phase. Till date all known constructions in this model are based on symmetric key primitives or on stronger public key assumptions like Decisional Diffie-Hellman (DDH) and Learning with Error (LWE). This work initiates the study of unconditional PIR with client prepossessing - where we avoid using any cryptographic assumptions. We present a new PIR protocol for $2t$ servers (where $t \in [2,\log_2n/2]$) with threshold 1, where client and server online computation is $\OO(\sqrt{n})$\footnote{the $\OO(.)$ notation hides $\poly\log$ factors} - matching the computation costs of other works based on cryptographic assumptions. The client storage and online communication complexity are $\OO(n^{0.5+1/2t})$ and $\OO(n^{1/2})$ respectively. Compared to previous works our PIR with client preprocessing protocol also has a very concretely efficient client/server online computation phase - which is dominated by xor operations, compared to cryptographic operations that are orders of magnitude slower. As a building block for our construction, we introduce a new information-theoretic primitive called \textit{privately multi-puncturable random set }(\pprs), which might be of independent interest. This new primitive can be viewed as a generalization of privately puncturable pseudo-random set, which is the key cryptographic building block used in previous works on PIR with client preprocessing. block used in previous works on PIR with client preprocessing.
2024
TCC
Space-Lock Puzzles and Verifiable Space-Hard Functions from Root-Finding in Sparse Polynomials
Timed cryptography has initiated a paradigm shift in the design of cryptographic protocols: Using timed cryptography we can realize tasks \emph{fairly}, which is provably out of range of standard cryptographic concepts. To a certain degree, the success of timed cryptography is rooted in the existence of efficient protocols base on the \emph{sequential squaring assumption}. In this work, we consider space analogues of timed cryptographic primitives, which we refer to as \emph{space-hard} primitives. Roughly speaking, these notions require honest protocol parties to invest a certain amount of space and provide security against space constrained adversaries. While inefficient generic constructions of timed-primitives from strong assumptions such as indistinguishability obfuscation can be adapted to the space-hard setting, we currently lack concrete and versatile assumptions for space-hard cryptography. In this work, we initiate the study of space-hard primitives from concrete algebraic assumptions relating to the problem of root-finding of sparse polynomials. Our motivation to study this problem is a candidate construction of VDFs by Boneh et al. (CRYPTO 2018) which are based on the hardness of inverting permutation polynomials. Somewhat anticlimactically, our first contribution is a full break of this candidate. However, we then revise this hardness assumption by dropping the permutation requirement and considering arbitrary sparse high degree polynomials. We argue that this type of assumption is much better suited for space-hardness rather than timed cryptography. We then proceed to construct both space-lock puzzles and verifiable space-hard functions from this assumption.
2024
ASIACRYPT
Password-Protected Threshold Signatures
We witness increase in applications like cryptocurrency wallets, which involve users issuing signatures using private keys. To protect these keys from loss or compromise, users commonly outsource them to a custodial server. This creates a new point of failure, because compromise of such server leaks the user’s key, and if user authentication is implemented with a password then this password becomes open to an offline dictionary attack (ODA). A better solution is to secret-share the key among a set of servers, possibly including user’s own device(s), and implement password authentication and signature computation using threshold cryptography. We propose a notion of augmented password protected threshold signature scheme (aptSIG) which captures the best possible security level for this setting. Using standard threshold cryptography techniques, i.e. threshold password authentication and threshold signatures, one can guarantee that compromising up to t out of n servers reveals no information on either the key or the password. However, we extend this with a novel property, namely that compromising even all n servers also does not leak any information, except via an unavoidable ODA attack, which reveals the key (and the password) only if the attacker guesses the password. We define aptSIG in the Universally Composable (UC) framework and show that it can be constructed very efficiently, using a black-box composition of any UC threshold signature [12] and a UC augmented Password-Protected Secret Sharing (aPPSS), which we define as an extension of prior notion of PPSS [26]. As concrete instantiations we obtain secure aptSIG schemes for ECDSA and BLS signatures with very small overhead over the respective respective threshold signature.
2024
TCC
More Efficient Functional Bootstrapping for General Functions in Polynomial Modulus
Functional bootstrapping seamlessly integrates the benefits of homomorphic computation using a look-up table and the noise reduction capabilities of bootstrapping. Its wide-ranging applications in privacy-preserving protocols underscore its broad impacts and significance. In this work, our objective is to craft more efficient and less restricted functional bootstrapping methods for general functions within a polynomial modulus. We introduce a series of novel techniques, proving that functional bootstrapping for general functions can be essentially as efficient as regular FHEW/TFHE bootstrapping. Our new algorithms operate within the realm of prime-power and odd composite cyclotomic rings, offering versatility without any additional requirements on input noise and message space beyond correct decryption.
2024
TCC
Bruisable Onions: Anonymous Communication in the Asynchronous Model
In onion routing, a message travels through the network via a series of intermediaries, wrapped in layers of encryption to make it difficult to trace. Onion routing is an attractive approach to realizing anonymous channels because it is simple and fault tolerant. Onion routing protocols provably achieving anonymity in realistic adversary models are known for the synchronous model of communication so far. In this paper, we give the first onion routing protocol that achieves anonymity in the asynchronous model of communication. The key tool that our protocol relies on is the novel cryptographic object that we call bruisable onion encryption. The idea of bruisable onion encryption is that even though neither the onion's path nor its message content can be altered in transit, an intermediate router on the onion's path that observes that the onion is delayed can nevertheless slightly damage, or bruise it. An onion that is chronically delayed will have been bruised by many intermediaries on its path and become undeliverable. This prevents timing attacks and, as we show, yields a provably secure onion routing protocol in the asynchronous setting.
2024
TCC
Black-Box Timed Commitments from Time-Lock Puzzles
A Timed Commitment (TC) with time parameter $t$ is hiding for time at most $t$, that is, commitments can be force-opened by any third party within time $t$. In addition to various cryptographic assumptions, the security of all known TC schemes relies on the sequentiality assumption of repeated squarings in hidden-order groups. The repeated squaring assumption is therefore a security bottleneck. In this work, we give a black-box construction of TCs from any time-lock puzzle (TLP) by additionally relying on one-way permutations and collision-resistant hashing. Currently, TLPs are known from (a) the specific repeated squaring assumption, (b) the general (necessary) assumption on the \emph{existence of worst-case non-parallelizing languages} and indistinguishability obfuscation, and (c) any iteratively sequential function and the hardness of the circular small-secret LWE problem. The latter admits a plausibly post-quantum secure instantiation. Hence, thanks to the generality of our transform, we get i) the first TC whose \emph{timed} security is based on the the existence of non-parallelizing languages and ii) the first TC that is plausibly post-quantum secure. We first define \emph{quasi publicly-verifiable} TLPs (QPV-TLPs) and construct them from any standard TLP in a black-box manner without relying on any additional assumptions. Then, we devise a black-box commit-and-prove system to transform any QPV-TLPs into a TC.
2024
TCC
Monotone Policy BARGs from BARGs and Additively Homomorphic Encryption
A monotone policy batch $\mathsf{NP}$ language $\mathcal{L}_{\mathcal{R}, P}$ is parameterized by a monotone policy $P \colon \{0,1\}^k \to \{0,1\}$ and an $\mathsf{NP}$ relation $\mathcal{R}$. A statement $(x_1, \ldots, x_k)$ is a \textsc{yes} instance if there exists $w_1, \ldots, w_k$ where $P(\mathcal{R}(x_1, w_1), \ldots, \mathcal{R}(x_k, w_k)) = 1$. For example, we might say that an instance $(x_1, \ldots, x_k)$ is a \textsc{yes} instance if a majority of the statements are true. A monotone policy batch argument (BARG) for $\mathsf{NP}$ allows a prover to prove that $(x_1, \ldots, x_k) \in \mathcal{L}_{\mathcal{R}, P}$ with a proof of size $\mathsf{poly}(\lambda, |\mathcal{R}|, \log k)$, where $\lambda$ is the security parameter, $|\mathcal{R}|$ is the size of the Boolean circuit that computes $\mathcal{R}$, and $k$ is the number of instances. Recently, Brakerski, Brodsky, Kalai, Lombardi, and Paneth (CRYPTO~2023) gave the first monotone policy BARG for $\mathsf{NP}$ from the learning with errors (LWE) assumption. In this work, we describe a generic approach for constructing monotone policy BARGs from any BARG for $\mathsf{NP}$ together with an additively homomorphic encryption scheme. This yields the first constructions of monotone policy BARGs from the $k$-$\ms{Lin}$ assumption in prime-order pairing groups as well as the (subexponential) DDH assumption in /pairing-free/ groups. Central to our construction is a notion of a zero-fixing hash function, which is a relaxed version of a predicate-extractable hash function from the work of Brakerski~et~al. Our relaxation enables a direct realization of zero-fixing hash functions from BARGs for $\mathsf{NP}$ and additively homomorphic encryption, whereas the previous notion relied on leveled homomorphic encryption, and by extension, the LWE assumption. As an application, we also show how to combine a monotone policy BARG with a puncturable signature scheme to obtain a monotone policy aggregate signature scheme. Our work yields the first (statically-secure) monotone policy aggregate signatures that supports general monotone Boolean circuits from standard pairing-based assumptions. Previously, this was only known from LWE.
2024
TCC
Distributing Keys and Random Secrets with Constant Complexity
In the Distributed Secret Sharing Generation (DSG) problem n parties wish to obliviously sample a secret-sharing of a random value s taken from some finite field, without letting any of the parties learn s. Distributed Key Generation (DKG) is a closely related variant of the problem in which, in addition to their private shares, the parties also generate a public "commitment" g^s to the secret. Both DSG and DKG are central primitives in the domain of secure multiparty computation and threshold cryptography. In this paper, we study the communication complexity of DSG and DKG. Motivated by large-scale cryptocurrency and blockchain applications, we ask whether it is possible to obtain protocols in which the communication per party is a constant that does not grow with the number of parties. We answer this question to the affirmative in a model where broadcast communication is implemented via a public bulletin board (e.g., a ledger). Specifically, we present a constant-round DSG/DKG protocol in which the number of bits that each party sends/receives from the public bulletin board is a constant that depends only on the security parameter and the field size but does not grow with the number of parties n. In contrast, in all existing solutions at least some of the parties send \Omega(n) bits. Our protocol works in the near-threshold setting. Given arbitrary privacy/correctness parameters $0<\tau_p<\tau_c<1$, the protocol tolerates up to \tau_p n$ actively corrupted parties and delivers shares of a random secret according to some $\tau_p n$-private $\tau_c n$-correct secret sharing scheme, such that the adversary cannot bias the secret or learn anything about it. The protocol is based on non-interactive zero-knowledge proofs, non-interactive commitments and a novel secret-sharing scheme with special robustness properties that is based on Low-Density Parity-Check codes. As a secondary contribution, we extend the formal MPC-based treatment of DKG/DSG, and study new aspects of Affine Secret Sharing Schemes.
2024
ASIACRYPT
Efficient Fuzzy Private Set Intersection from Fuzzy Mapping
Private set intersection (PSI) allows Sender holding a set \(X\) and Receiver holding a set \(Y\) to compute only the intersection \(X\cap Y\) for Receiver. We focus on a variant of PSI, called fuzzy PSI (FPSI), where Receiver only gets points in \(X\) that are at a distance not greater than a threshold from some points in \(Y\). Most current FPSI approaches first pick out pairs of points that are potentially close and then determine whether the distance of each selected pair is indeed small enough to yield FPSI result. Their complexity bottlenecks stem from the excessive number of point pairs selected by the first picking process. Regarding this process, we consider a more general notion, called fuzzy mapping (Fmap), which can map each point of two parties to a set of identifiers, with closely located points having a same identifier, which forms the selected point pairs. We initiate the formal study on Fmap and show novel Fmap instances for Hamming and \(L_\infty\) distances to reduce the number of selecte
2024
TCC
Hamming Weight Proofs of Proximity with One-Sided Error
We provide a wide systematic study of proximity proofs with one-sided error for the Hamming weight problem Ham_alpha (the language of bit vectors with Hamming weight at least alpha), surpassing previously known results for this problem. We demonstrate the usefulness of the one-sided error property in applications: no malicious party can frame an honest prover as cheating by presenting verifier randomness that leads to a rejection. We show proofs of proximity for Ham_alpha with one-sided error and sublinear proof length in three models (MA, PCP, IOP), where stronger models allow for smaller query complexity. For n-bit input vectors, highlighting input query complexity, our MA has O(log n) query complexity, the PCP makes O(loglog n) queries, and the IOP makes a single input query. The prover in all of our applications runs in expected quasi-linear time. Additionally, we show that any perfectly complete IP of proximity for Ham_alpha with input query complexity n^{1-epsilon} has proof length Omega(log n). Furthermore, we study PCPs of proximity where the verifier is restricted to making a single input query (SIQ). We show that any SIQ-PCP for Ham_alpha must have a linear proof length, and complement this by presenting a SIQ-PCP with proof length n+o(n). As an application, we provide new methods that transform PCPs (and IOPs) for arbitrary languages with nonzero completeness error into PCPs (and IOPs) that exhibit perfect completeness. These transformations achieve parameters previously unattained.
2024
TCC
Quantum Pseudorandom Scramblers
Quantum pseudorandom state generators (PRSGs) have stimulated exciting developments in recent years. A PRSG, on a fixed initial (e.g., all-zero) state, produces an output state that is computationally indistinguishable from a Haar random state. However, pseudorandomness of the output state is not guaranteed on other initial states. In fact, known PRSG constructions provably fail on some initial states. In this work, we propose and construct quantum Pseudorandom State Scramblers (PRSSs), which can produce a pseudorandom state on an arbitrary initial state. In the information-theoretical setting, we obtain a scrambler which maps an arbitrary initial state to a distribution of quantum states that is close to Haar random in total variation distance. As a result, our scrambler exhibits a dispersing property. Loosely, it can span an ɛ-net of the state space. This significantly strengthens what standard PRSGs can induce, as they may only concentrate on a small region of the state space provided that average output state approximates a Haar random state. Our PRSS construction develops a parallel extension of the famous Kac's walk, and we show that it mixes exponentially faster than the standard Kac's walk. This constitutes the core of our proof. We also describe a few applications of PRSSs. While our PRSS construction assumes a post-quantum one-way function, PRSSs are potentially a weaker primitive and can be separated from one-way functions in a relativized world similar to standard PRSGs.
2024
TCC
Tighter Adaptive IBEs and VRFs: Revisiting Waters’ Artificial Abort
One of the most popular techniques to prove adaptive security of identity-based encryptions (IBE) and verifiable random functions (VRF) is the _partitioning technique_. Currently, there are only two methods to relate the adversary's advantage and runtime (\epsilon, T) to those of the reduction's (\epsilon_proof, T_proof) using this technique: One originates to Waters (Eurocrypt 2005) who introduced the famous _artificial abort_ step to prove his IBE, achieving (\epsilon_proof, T_proof) = (O(\epsilon/Q), T+O(Q^2/\epsilon^2)), where Q is the number of key queries. Bellare and Ristenpart (Eurocrypt 2009) provide an alternative analysis for the same scheme removing the artificial abort step, resulting in (\epsilon_proof, T_proof) = (O(\epsilon^2/Q), T+O(Q)). Importantly, the current reductions all loose quadratically in \epsilon. In this paper, we revisit this two decade old problem and analyze proofs based on the partitioning technique through a new lens. For instance, the Waters IBE can now be proven secure with (\epsilon_proof, T_proof) = (O(\epsilon^{3/2}/Q), T+O(Q)), breaking the quadratic dependence on \epsilon. At the core of our improvement is a finer estimation of the failing probability of the reduction in Waters' original proof relying on artificial abort. We use Bonferroni's inequality, a tunable inequality obtained by cutting off higher order terms from the equality derived by the inclusion-exclusion principle. Our analysis not only improves the reduction of known constructions but also opens the door for new constructions. While a similar improvement to Waters IBE is possible for the lattice-based IBE by Agrawal, Boneh, and Boyen (Eurocrypt 2010), we can slightly tweak the so-called partitioning function in their construction, achieving (\epsilon_proof, T_proof) = (O(\epsilon/Q), T+O(Q)). This is a much better reduction than the previously known (O(\epsilon^3/Q^2), T+O(Q)). We also propose the first VRF with proof and verification key sizes sublinear in the security parameter under the standard d-LIN assumption, while simultaneously improving the reduction cost compared to all prior constructions.
2024
ASIACRYPT
Robust AE With Committing Security
There has been a recent interest to develop and standardize Robust Authenticated Encryption schemes. NIST, for example, is considering an Accordion mode for (wideblock) tweakable blockcipher, with Robust AE as a primary application. At the same time, recent attacks and applications suggest that encryption context needs to be committed. Indeed, committing security is also a design consideration in Accordion mode. In this work, we give a modular solution for this problem. We first show how to transform any wideblock tweakable blockcipher TE to a Robust AE scheme SE that commits just the key. The overhead is cheap, just a few finite-field multiplications and blockcipher calls. If one wants to commit the entire encryption context, one can simply hash the context to derive a 256-bit subkey, and uses SE on that subkey. The use of 256-bit key on SE only means that it has to rely on AES-256 but doesn't require TE to have 256-bit key. Our approach frees the Accordion designs from consideration of committing security. Moreover, it gives a big saving for several key-committing applications that don't want to pay the inherent hashing cost of full committing.
2024
ASIACRYPT
Digital Signatures with Outsourced Hashing
Most practical signature schemes follow the hash-then-sign paradigm: First the (arbitrarily long) message is mapped to a fixed-length hash value, then a signing core derives the signature from the latter. As it is implementationally attractive, practitioners routinely exploit this structure by decoupling the two steps and distributing them among different entities; for instance, industry standards like PKCS#11 specify how security smartcards implement exclusively the core, leaving the hashing to their (untrusted) environment. At the same time, the classic security notions for signature schemes don’t consider such a decoupling, and thus don’t cover attacks involving, for instance, providing the core with maliciously chosen hash values. A first work that studied this gap appeared only recently (PKC 2024). While it could confirm for a few candidates that they remain secure when split according to PKCS#11, its syntactical abstractions and security definitions are too limited to cover most practical signature schemes (e.g., the many variants of Fiat–Shamir/Schnorr). This article studies how the functional separation of hashing and core in signature schemes can be systematized, so that implementational demands (in the spirit of PKCS#11) and, hopefully, security can be met simultaneously. We accompany this foundational work with a case study of a variety of standardized (EC)DLP based signatures. Surprisingly, as we show, their security varies across the full spectrum between universally forgeable and provably unforgeable. For instance, for the same scheme, we demonstrate universal forgeries when instantiated with 224-bit ECC (using an attack that completes in milliseconds), while we establish strong unforgeability for the 256-bit ECC case. Many schemes become completely insecure when the hash function is instantiated with SHA3 instead of with SHA2.
2024
ASIACRYPT
More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal Their Inability to Resist DFA
At Asiacrypt 2021, Baksi et al. introduced DEFAULT, the first block cipher designed to resist differential fault attacks (DFA) at the algorithm level, boasting of 64-bit DFA security. However, during Eurocrypt 2022, Nageler et al. presented a DFA attack that exposed vulnerabilities in the claimed DFA security of DEFAULT, reducing it by up to 20 bits in the case of the simple key schedule and even allowing for unique key recovery in the presence of rotating keys. In this work, we compute deterministic differential trails for up to five rounds, injecting around 5 faults into the simple key schedule for key recovery, recovering equivalent keys with just 36 faults in the DEFAULT-LAYER, and introducing a generic DFA approach suitable for round-independent keys within the DEFAULT cipher. These results represent the most efficient key recovery achieved for the DEFAULT cipher under DFA attacks so far. Additionally, we introduce a novel fault attack called the Statistical-Differential Fault Attack (SDFA), specifically tailored for linear-structured SBox-based ciphers like DEFAULT. This technique is successfully applied to BAKSHEESH, resulting in a nearly unique key recovery. Our findings emphasize the vulnerabilities present in linear-structured SBox-based ciphers and underscore the challenges in establishing robust DFA protection for such cipher designs.
2024
ASIACRYPT
On Security Proofs of Existing Equivalence Class Signature Schemes
Equivalence class signatures (EQS; Asiacrypt '14), sign vectors of elements from a bilinear group. Anyone can transform a signature on a vector to a signature on any multiple of that vector; signatures thus authenticate equivalence classes. A transformed signature/message pair is indistinguishable from a random signature on a random message. EQS have been used to efficiently instantiate (delegatable) anonymous credentials, (round-optimal) blind signatures, ring and group signatures, anonymous tokens and contact-tracing schemes, to name a few. The original EQS construction (J. Crypto '19) is proven secure in the generic group model, and the first scheme from standard assumptions (PKC '18) satisfies a weaker model insufficient for most applications. Two works (Asiacrypt '19, PKC '22) propose applicable schemes that assume trusted parameters. Their unforgeability is argued via a security proof from standard (or non-interactive) assumptions. We show that their security proofs are flawed and explain the subtle issue. While the schemes might be provable in the algebraic group model (AGM), we instead show that the original construction, which is more efficient and has found applications in many works, is secure in the AGM under a parametrized non-interactive hardness assumption.
2024
ASIACRYPT
Strongly Secure Universal Thresholdizer
A universal thresholdizer (UT), constructed from a threshold fully homomorphic encryption by Boneh et. al, Crypto 2018, is a general framework for universally thresholdizing many cryptographic schemes. However, their framework is insufficient to construct strongly secure threshold schemes, such as threshold signatures and threshold public-key encryption, etc. In this paper, we strengthen the security definition for a universal thresholdizer and propose a scheme which satisfies our stronger security notion. Our UT scheme is an improvement of Boneh et. al ’s construction in the level of threshold fully homomorphic encryption using a key homomorphic pseudorandom function. We apply our strongly secure UT scheme to construct strongly secure threshold signatures and threshold public-key encryption.
2024
ASIACRYPT
Leakage-Resilient Incompressible Cryptography: Constructions and Barriers
We introduce Leakage-Resilient Incompressible cryptography, which simultaneously addresses two variants of side-channel attacks that have been tackled in theoretical cryptography. Leakage-resilience seeks to provide security against an adversary who learns a part of the secret-key and the entire ciphertext or signature; conversely, incompressible cryptography provides security against an adversary who learns the entire secret-key, but only a part of the ciphertext or signature. However, constructions in either of these security models can fail against an attack in the other model. In this work, we define a new model of security that subsumes both leakage-resilient cryptography and incompressible cryptography, and we present several non-trivial positive and negative results. On the positive side, first we present a transformation from incompressible symmetric-key encryption (SKE) to leakage-resilient incompressible SKE in the information-theoretic setting. Next, as one of our main results, we construct a leakage-resilient incompressible public-key encryption (PKE), combining an incompressible SKE and a new primitive that we call leakage-resilient non-committing key encapsulation mechanism (LR-NC-KEM). While an incompressible SKE suitable for use in both these constructions already exists in the literature (Dziembowski, CRYPTO 2006), we present a new construction with better parameters, using an appropriate notion of invertible extractors; this leads to corresponding improvements in the final parameters we obtain in these constructions. We also design a leakage-resilient incompressible signature scheme. On the negative side, we show barriers to significantly improving the parameters we obtain, by showing impossibility of basing the security of such improved schemes on blackbox reductions. Apart from the general framework and the specific results we obtain, some of the intermediate tools that we define and instantiate, like LR-NC-KEM and invertible extractors, may be of independent interest.
2024
ASIACRYPT
A new security evaluation method based on resultant for arithmetic-oriented algorithms
The rapid development of advanced cryptographic applications like multi-party computation (MPC), fully homomorphic encryption (FHE), and zero-knowledge (ZK) proofs have motivated the designs of the so-called arithmetic-oriented (AO) primitives. Efficient AO primitives typically build over large fields and use large S-boxes. Such design philosophy brings difficulties in the cryptanalysis of these primitives as classical cryptanalysis methods do not apply well. The generally recognized attacks against these primitives are algebraic attacks, especially Gr\"obner basis attacks. Thus, the numbers of security rounds are usually derived through the complexity of solving the system of algebraic equations using Gr\"obner bases. In this paper, we propose a novel framework for algebraic attacks against AO primitives. Instead of using Gr\"obner basis, we use {\it resultants} to solve a system of multivariate equations that can better exploit the algebraic structures of AO primitives. We employ several techniques to redu
2024
ASIACRYPT
Lova: Lattice-Based Folding Scheme from Unstructured Lattices
Folding schemes (Kothapalli et al., CRYPTO 2022) are a conceptually simple, yet powerful cryptographic primitive that can be used as a building block to realise incrementally verifiable computation (IVC) with low recursive overhead without general-purpose non-interactive succinct arguments of knowledge (SNARK). Most folding schemes known rely on the hardness of the discrete logarithm problem, and thus are both not quantum-resistant and operate over large prime fields. Existing post-quantum folding schemes (Boneh, Chen, ePrint 2024/257) based on lattice assumptions instead are secure under structured lattice assumptions, such as the Module Short Integer Solution Assumption (MSIS), which also binds them to relatively complex arithmetic. In contrast, we construct Lova, the first folding scheme whose security relies on the (unstructured) SIS assumption. We provide a Rust implementation of Lova, which makes only use of arithmetic in hardware-friendly power-of-two moduli. Crucially, this avoids the need of implementing and performing any finite field arithmetic. At the core of our results lies a new exact Euclidean norm proof which might be of independent interest
2024
ASIACRYPT
Key Collisions on AES and Its Applications
In this paper, we explore a new type of key collisions called target-plaintext key collisions of AES, which emerge as an open problem in the key committing security and are directly converted into single-block collision attacks on Davies-Meyer (DM) hashing mode. For this key collision, a ciphertext collision is uniquely observed when a specific plaintext is encrypted under two distinct keys. We introduce an efficient automatic search tool designed to find target-plaintext key collisions. This tool exploits bit-wise behaviors of differential characteristics and dependencies among operations and internal variables of both data processing and key scheduling parts. This allows us to hierarchically perform rebound-type attacks to identify key collisions. As a result, we demonstrate single-block collision attacks on 2/5/6-round AES-128/192/256-DM and semi-free-start collision attacks on 5/7/9-round AES-128/192/256-DM, respectively. To validate our attacks, we provide an example of fixed-target-plaintext key collision/semi-free-start collisions on 9-round AES-256-DM. Furthermore, by exploiting a specific class of free-start collisions with our tool, we present two-block collision attacks on 3/9-round AES-128/256-DM, respectively.
2024
ASIACRYPT
Randomness in Private Sequential Stateless Protocols
A significant body of work in information-theoretic cryptography has been devoted to the fundamental problem of understanding the power of randomness in private computation. This has included both in-depth study of the randomness complexity of specific functions (e.g., Couteau and Rosén, ASIACRYPT 2022, gives an upper bound of 6 for n-party AND), and results for broad classes of functions (e.g., Kushilevitz et al., STOC 1996, gives an O(1) upper bound for all functions with linear-sized circuits). In this work, we make further progress on both fronts by studying randomness complexity in a new simple model of secure computation called Private Sequential Stateless (PSS) model. We show that functions with O(1) randomness complexity in the PSS model are exactly those with constant-width branching programs, restricting to “speak-constant-times” protocols and to “read-constant-times” branching programs. Towards this our main construction is a novel PSS protocol for “strongly regular branching programs” (SRBP). As we show, any constant-width branching program can be converted to a constant-width SRBP, yielding one side of our characterization. The converse direction uses ideas from Kushilevitz et al. to translate randomness to communication. Our protocols are concretely efficient, has a simple structure, covers the broad class of functions with small-width, read-once (or read-a-few-times) branching programs, and hence may be of practical interest when 1-privacy is considered adequate. Also, as a consequence of our general result for SRBPs, we obtain an improvement over the protocol of Couteau and Rosén for AND in certain cases — not in terms of the number of bits of randomness, but in terms of a simpler protocol structure (sequential, stateless).
2024
ASIACRYPT
Dishonest Majority Constant-Round MPC with Linear Communication from DDH
In this work, we study constant round multiparty computation (MPC) for Boolean circuits against a fully malicious adversary who may control up to $n-1$ out of $n$ parties. Without relying on fully homomorphic encryption (FHE), the best-known results in this setting are achieved by Wang et al. (CCS 2017) and Hazay et al. (ASIACRYPT 2017) based on garbled circuits, which require a quadratic communication in the number of parties $O(|C|\cdot n^2)$. In contrast, for non-constant round MPC, the recent result by Rachuri and Scholl (CRYPTO 2022) has achieved linear communication $O(|C|\cdot n)$. In this work, we present the first concretely efficient constant round MPC protocol in this setting with linear communication in the number of parties $O(|C|\cdot n)$. Our construction can be based on any public-key encryption scheme that is linearly homomorphic for public keys. Our work gives a concrete instantiation from a variant of the El-Gamal Encryption Scheme assuming the DDH assumption. The analysis shows that when the computational security parameter $\lambda=128$ and statistical security parameter $\kappa=80$, our protocol achieves a smaller communication than Wang et al. (CCS 2017) when there are $16$ parties for AES circuit, and $8$ parties for general Boolean circuits (where we assume that the numbers of AND gates and XOR gates are the same). When comparing with the recent work by Beck et al. (CCS 2023) that achieves constant communication complexity $O(|C|)$ in the strong honest majority setting ($t<(1/2-\epsilon)n$ where $\epsilon$ is a constant), our protocol is better as long as $n<3500$ (when $t=n/4$ for their work).
2024
ASIACRYPT
Unclonable Non-Interactive Zero-Knowledge
A non-interactive ZK (NIZK) proof enables verification of NP statements without revealing secrets about them. However, an adversary that obtains a NIZK proof may be able to clone this proof and distribute arbitrarily many copies of it to various entities: this is inevitable for any proof that takes the form of a classical string. In this paper, we ask whether it is possible to rely on quantum information in order to build NIZK proof systems that are impossible to clone. We define and construct unclonable non-interactive zero-knowledge arguments (of knowledge) for NP, addressing a question first posed by Aaronson (CCC 2009). Besides satisfying the zero-knowledge and argument of knowledge properties, these proofs additionally satisfy unclonability. Very roughly, this ensures that no adversary can split an honestly generated proof of membership of an instance x in an NP language L and distribute copies to multiple entities that all obtain accepting proofs of membership of x in L. Our result has applications to unclonable signatures of knowledge, which we define and construct in this work; these non-interactively prevent replay attacks.
2024
ASIACRYPT
Evasive LWE Assumptions: Definitions, Classes, and Counterexamples
The evasive LWE assumption, proposed by Wee [Eurocrypt'22 Wee] for constructing a lattice-based optimal broadcast encryption, has shown to be a powerful assumption, adopted by subsequent works to construct advanced primitives ranging from ABE variants to obfuscation for null circuits. However, a closer look reveals significant differences among the precise assumption statements involved in different works, leading to the fundamental question of how these assumptions compare to each other. In this work, we initiate a more systematic study on evasive LWE assumptions: (i) Based on the standard LWE assumption, we construct simple counterexamples against three private-coin evasive LWE variants, used in [Crypto'22 Tsabary, Asiacrypt'22 VWW, Crypto'23 ARYY] respectively, showing that these assumptions are unlikely to hold. (ii) Based on existing evasive LWE variants and our counterexamples, we propose and define three classes of plausible evasive LWE assumptions, suitably capturing all existing variants for which we are not aware of non-obfuscation-based counterexamples. (iii) We show that under our assumption formulations, the security proofs of [Asiacrypt'22 VWW] and [Crypto'23 ARYY] can be recovered, and we reason why the security proof of [Crypto'22 Tsabary] is also plausibly repairable using an appropriate evasive LWE assumption.
2024
ASIACRYPT
Partially Non-Interactive Two-Round Lattice-Based Threshold Signatures
This paper gives the first lattice-based two-round threshold signature based on standard lattice assumptions for which the first message is independent of the message being signed without relying on fully-homomorphic encryption, and our construction supports arbitrary thresholds. Our construction provides a careful instantiation of a generic threshold signature construction by Tessaro and Zhu (EUROCRYPT '23) based on specific linear hash functions, which in turns can be seen as a generalization of the FROST scheme by Komlo and Goldberg (SAC '20). Our reduction techniques are new in the context of lattice-based cryptography. Also, our scheme does not use any heavy tools, such as NIZKs or homomorphic trapdoor commitments.
2024
TCC
Batch Arguments to NIZKs from One-Way Functions
Succinctness and zero-knowledge are two fundamental properties in the study of cryptographic proof systems. Several recent works have formalized the connections between these two notions by showing how to realize non-interactive zero-knowledge (NIZK) arguments from succinct non-interactive arguments. Specifically, Champion and Wu (CRYPTO 2023) as well as Bitansky, Kamath, Paneth, Rothblum, and Vasudevan (ePrint 2023) recently showed how to construct a NIZK argument for NP from a (somewhere-sound) non-interactive batch argument (BARG) and a dual-mode commitment scheme (and in the case of the Champion-Wu construction, a local pseudorandom generator). The main open question is whether a BARG suffices for a NIZK (just assuming one-way functions). In this work, we first show that an adaptively-sound BARG for NP together with an one-way function imply a computational NIZK argument for NP. We then show that the weaker notion of somewhere soundness achieved by existing BARGs from standard algebraic assumptions are also adaptively sound if we assume sub-exponential security. This transformation may also be of independent interest. Taken together, we obtain a NIZK argument for NP from one-way functions and a sub-exponentially-secure somewhere-sound BARG for NP. If we instead assume plain public-key encryption, we show that a standard polynomially-secure somewhere-sound batch argument for NP suffices for the same implication. As a corollary, this means a somewhere-sound BARG can be used to generically upgrade any semantically-secure public-key encryption scheme into one secure against chosen-ciphertext attacks. More broadly, our results demonstrate that constructing non-interactive batch arguments for NP is essentially no easier than constructing NIZK arguments for NP.
2024
ASIACRYPT
The Concrete Security of Two-Party Computation: Simple Definitions, and Tight Proofs for PSI and OPRFs
This paper aims to give tight proofs, and thus concrete-security improvements, for protocols for two-party computation. Our first step is to suggest, as target, a simple, indistinguishability-based, concrete-security-friendly definition we call InI. This would of course be a poor choice if InI were weaker than the standard simulation-based definition, but it is not; we show that for functionalities of practical interest like PSI and its variants, the two definitions are equivalent. Based on this, we move forward to study a canonical OPRF-based construction of PSI, giving a tight proof of InI security of the constructed PSI protocol based on the security of the OPRF. This leads us to the concrete security of OPRFs, where we show how different DH-style assumptions on the underlying group yield proofs of different degrees of tightness, including one that is tight, for the well-known and efficient 2H-DH OPRF.
2024
ASIACRYPT
Faster Signatures from MPC-in-the-Head
We revisit the construction of signature schemes using the MPC-in-the-head paradigm. We obtain two main contributions: – We observe that previous signatures in the MPC-in-the-head paradigm must rely on a salted version of the GGM puncturable pseudoran- dom function (PPRF) to avoid collision attacks. We design a new efficient PPRF construction that is provably secure in the multi- instance setting. The security analysis of our PPRF, in the ideal cipher model, is quite involved and forms a core technical contri- bution of our work. While previous constructions had to rely on a hash function, our construction uses only a fixed-key block cipher and is considerably more efficient as a result: we observe a 12× to 55× speed improvement for a recent signature scheme (Joux and Huth, Crypto’24). Our improved PPRF can be used to speed up many MPC-in-the-head signatures. – We introduce a new signature scheme from the regular syndrome decoding assumption, based on a new protocol for the MPC-in- the-head paradigm, which significantly reduces communication com- pared to previous works. Our scheme is conceptually simple, though its security analysis requires a delicate and nontrivial combinatorial analysis.
2024
ASIACRYPT
Timed Secret Sharing
This paper introduces the notion of timed secret sharing (TSS), which establishes lower and upper time bounds for secret reconstruction in a threshold secret sharing scheme. Such time bounds are particularly useful in scenarios where an early or late reconstruction of a secret matters. We propose several new constructions that offer different security properties and show how they can be instantiated efficiently using novel techniques. We highlight how our ideas can be used to break the public goods game, which is an issue inherent to threshold secret sharing-based systems, without relying on incentive mechanism. We achieve this through an upper time bound that can be implemented either via short-lived proofs, or the gradual release of additional shares, establishing a trade-off between time and fault tolerance. The latter independently provides robustness in the event of dropout by some portion of shareholders.
2024
ASIACRYPT
Non-interactive Blind Signatures: Post-quantum and Stronger Security
Blind signatures enable a receiver to obtain signatures on messages of its choice without revealing any message to the signer. Round-optimal blind signatures are designed as a two-round interactive protocol between a signer and receiver. Coincidentally, the choice of message is not important in many applications, and is routinely set as a random (unstructured) message by a receiver. With the goal of designing more efficient blind signatures for such applications, Hanzlik (Eurocrypt '23) introduced a new variant called non-interactive blind signatures (NIBS). These allow a signer to asynchronously generate partial signatures for any recipient such that only the intended recipient can extract a blinded signature for a random message. This bypasses the two-round barrier for traditional blind signatures, yet enables many known applications. Hanzlik provided new practical designs for NIBS from bilinear pairings. In this work, we propose new enhanced security properties for NIBS as well as provide multiple constructions with varying levels of security and concrete efficiency. We propose a new generic paradigm for NIBS from circuit-private leveled homomorphic encryption achieving optimal-sized signatures (i.e., same as any non-blind signature) at the cost of large public keys. We also investigate concretely efficient NIBS with post-quantum security, satisfying weaker level of privacy as proposed by Hanzlik.
2024
ASIACRYPT
Tightly-Secure Group Key Exchange with Perfect Forward Secrecy
In this work, we present a new paradigm for constructing Group Authenticated Key Exchange (GAKE). This result is the first tightly secure GAKE scheme in a strong security model that allows maximum exposure attacks (MEX) where the attacker is allowed to either reveal the secret session state or the long-term secret of all communication partners. Moreover, our protocol features the strong and realistic notion of (full) perfect forward secrecy (PFS), that allows the attacker to actively modify messages before corrupting parties. We obtain our results via a series of tightly secure transformations. Our first transformation is from weakly secure KEMs to unilateral authenticated key exchange (UAKE) with weak forward secrecy (WFS). Next, we show how to turn this into an UAKE with PFS in the random oracle model. Finally, and as one of our major novel conceptual contributions, we describe how to build GAKE protocols from UAKE protocols, also in the random oracle model. We apply our transformations to obtain two practical GAKE protocols with tight security. The first is based on the DDH assumption and features low message complexity. Our second result is based on the LWE assumption. In this way, we obtain the first GAKE protocol from a post-quantum assumption that is tightly secure in a strong model of security allowing MEX attacks.
2024
ASIACRYPT
Updatable Private Set Intersection Revisited: Extended Functionalities, Deletion, and Worst-Case Complexity
Private set intersection (PSI) allows two mutually distrusting parties each holding a private set of elements, to learn the intersection of their sets without revealing anything beyond the intersection. Recent work (Badrinarayanan et al., PoPETS'22) initiates the study of updatable PSI (UPSI), which allows the two parties to compute PSI on a regular basis with sets that constantly get updated, where both the computation and communication complexity only grow with the size of the small updates and not the large entire sets. However, there are several limitations of their presented protocols. First, they can only be used to compute the plain PSI functionality and do not support extended functionalities such as PSI-Cardinality and PSI-Sum. Second, they only allow parties to add new elements to their existing set and do not support arbitrary deletion of elements. Finally, their addition-only protocols either require both parties to learn the output or only achieve low complexity in an amortized sense and incur linear worst-case complexity. In this work, we address all the above limitations. In particular, we study UPSI with semi-honest security in both the addition-only and addition-deletion settings. We present new protocols for both settings that support plain PSI as well as extended functionalities including PSI-Cardinality and PSI-Sum, achieving one-sided output (which implies two-sided output). In the addition-only setting, we also present a protocol for a more general functionality Circuit-PSI that outputs secret shares of the intersection. All of our protocols have worst-case computation and communication complexity that only grow with the set updates instead of the entire sets (except for a polylogarithmic factor). We implement our new UPSI protocols and compare with the state-of-the-art protocols for PSI and extended functionalities. Our protocols compare favorably when the total set sizes are sufficiently large, the new updates are sufficiently small, or in networks with low bandwidth.
2024
ASIACRYPT
QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup
Oblivious Transfer (OT) is at the heart of secure computation and is a foundation for many applications in cryptography. Over two decades of work have led to extremely efficient protocols for efficiently evaluating OT instances in the preprocessing model, through a paradigm called OT extension. A few OT instances generated in an offline phase can be used to perform many OTs in an online phase efficiently, i.e., with very low communication and computational overheads. Specifically, traditional OT extension uses a small number of “base” OTs, generated using any black-box OT protocol, and convert them into many OT instances using only lightweight symmetric-key primitives. Recently, a new paradigm of OT with a public-key setup has emerged, which replaces the base OTs with a non-interactive setup: Using only the public key of the other party, two parties can efficiently compute a virtually unbounded number of OT instances on-the-fly. In this paper, we put forth a novel framework for OT extension with a public-key setup (henceforth, “public-key OT”) and concretely efficient instantiations. Implementations of our framework are 30–100× faster when compared to the previous state-of-the-art public-key OT protocols, and remain competitive even when compared to OT protocols that do not offer a public-key setup. Additionally, our instantiations result in the first public-key schemes with plausible post-quantum security. In summary, this paper contributes: - QuietOT: A framework for OT extension with public-key setup that uses fast, symmetric-key primitives to generate OT instances following a one-time public-key setup, and offering additional features such as precomputability. - A public-key setup for QuietOT from the RingLWE assumption, resulting in the first post-quantum construction of OT extension with a public-key setup. - An optimized, open-source implementation of our construction that can generate up to 1M OT extensions per second on commodity hardware. In contrast, the state-of-the-art public-key OT protocol is limited to at most 20K OTs per second. - The first formal treatment of the security of OT with a public-key setup in a multi-party setting, which addresses several subtleties that were overlooked in prior work.
2024
ASIACRYPT
Dictators? Friends? Forgers. Breaking and Fixing Unforgeability Definitions for Anamorphic Signature Schemes
Anamorphic signature schemes (KPPYZ, Crypto 2023) allow users to hide encrypted messages in signatures to allow covert communication in a hypothesized scenario where encryption is outlawed by a "dictator" but authentication is permitted. We enhance the security of anamorphic signatures by proposing two parallel notions of unforgeability which close gaps in existing security definitions. The first notion considers a dictator who wishes to forge anamorphic signatures. This notion patches a divide between the definition and a stated security goal of robustness (BGHMR, Eurocrypt 2024). We port two related BGHMR constructions to the signature scheme setting and show that one is secure when built from unpredictable signature schemes while the other is broken. The second notion considers a recipient who wishes to forge signatures. To motivate this notion, we identify a gap in an existing security definition from KPPYZ and present attacks that allow parties to be impersonated when using schemes erroneously deemed secure. We then formalize our new unforgeability definition to close this gap. Interestingly, while the new definition is only modestly different from the old one, the change introduces subtle technical challenges that arise when proving security. We overcome these challenges in our reanalysis of existing anamorphic signature schemes by showing they achieve our new notion when built from chosen-randomness secure signatures or with encryption that satisfies a novel ideal-model simulatability property.
2024
ASIACRYPT
Unbounded ABE for Circuits from LWE, Revisited
We introduce new lattice-based techniques for building ABE for circuits with unbounded attribute length based on the LWE assumption, improving upon the previous constructions of Brakerski and Vaikuntanathan (CRYPTO 16) and Goyal, Koppula, and Waters (TCC 16). Our main result is a simple and more efficient unbounded ABE scheme for circuits where only the circuit depth is fixed at set-up; this is the first unbounded ABE scheme for circuits that rely only on black-box access to cryptographic and lattice algorithms. The scheme achieves semi-adaptive security against unbounded collusions under the LWE assumption. The encryption time and ciphertext size are roughly 3x larger than the prior bounded ABE of Boneh et al (EUROCRYPT 2014), substantially improving upon the encryption times in prior works. As a secondary contribution, we present an analogous result for unbounded inner product predicate encryption that satisfies weak attribute-hiding.
2024
ASIACRYPT
MinRank Gabidulin encryption scheme on matrix codes
The McEliece scheme is a generic frame which allows to use any error correcting code of which there exists an efficient decoding algorithm to design an encryption scheme by hiding the generator matrix code. Similarly, the Niederreiter frame is the dual version of the McEliece scheme, and achieves smaller ciphertexts. In the present paper, we propose a generalization of the McEliece frame and the Niederreiter frame to matrix codes and the MinRank problem, that we apply to Gabidulin matrix codes (Gabidulin rank codes considered as matrix codes). The masking we consider consists in starting from a rank code C, to consider a matrix version of C and to concatenate a certain number of rows and columns to the matrix codes version of the rank code C and then apply to an isometry for matric codes, i.e. right and left multiplications by fixed random matrices. The security of the schemes relies on the MinRank problem to decrypt a ciphertext, and the structural security of the scheme relies on a new problem EGMC-Indistinguishability problem that we introduce and that we study in detail. The main structural attack that we propose consists in trying to recover the masked linearity over the extension field which is lost during the masking process. Overall, starting from Gabidulin codes we obtain a very appealing tradeoff between the size of ciphertext and the size of the public key. For 128b of security we propose parameters ranging from ciphertext of size 65 B (and public keys of size 98 kB) to ciphertext of size 138B (and public key of size 41 kB). Our new approach permits to achieve better trade-off between ciphertexts and public key than the classical McEliece scheme. Our new approach permits to obtain an alternative scheme to the classic McEliece scheme, to obtain very small ciphertexts, with moreover smaller public keys than in the classic McEliece scheme. For 256 bits of security, we can obtain ciphertext as low as 119B, or public key as low as 87kB.
2024
ASIACRYPT
Unclonable Secret Sharing
Unclonable cryptography utilizes the principles of quantum mechanics to addresses cryptographic tasks that are impossible classically. We introduce a novel unclonable primitive in the context of secret sharing, called unclonable secret sharing (USS). In a USS scheme, there are shareholders, each holding a share of a classical secret represented as a quantum state. They can recover the secret once all parties (or at least parties) come together with their shares. Importantly, it should be infeasible to copy their own shares and send the copies to two non-communicating parties, enabling both of them to recover the secret. Our work initiates a formal investigation into the realm of unclonable secret sharing, shedding light on its implications, constructions, and inherent limitations. ** Connections: We explore the connections between USS and other quantum cryptographic primitives such as unclonable encryption and position verification, showing the difficulties to achieve USS in different scenarios. **Limited Entanglement: In the case where the adversarial shareholders do not share any entanglement or limited entanglement, we demonstrate information-theoretic constructions for USS. **Large Entanglement: If we allow the adversarial shareholders to have unbounded entanglement resources (and unbounded computation), we prove that unclonable secret sharing is impossible. On the other hand, in the quantum random oracle model where the adversary can only make a bounded polynomial number of queries, we show a construction secure even with unbounded entanglement. Furthermore, even when these adversaries possess only a polynomial amount of entanglement resources, we establish that any unclonable secret sharing scheme with a reconstruction function implementable using Cliffords and logarithmically many T-gates is also unattainable.
2024
ASIACRYPT
RoK, Paper, SISsors – Toolkit for Lattice-based Succinct Arguments
Lattice-based succinct arguments allow to prove bounded-norm satisfiability of relations, such as $f(\mathbf{s}) = \mathbf{t} \bmod q$ and $\|\mathbf{s}\|\leq \beta$, over specific cyclotomic rings $\mathcal{O}_\mathcal{K}$, with proof size polylogarithmic in the witness size. However, state-of-the-art protocols require either 1) a super-polynomial size modulus $q$ due to a soundness gap in the security argument, or 2) a verifier which runs in time linear in the witness size. Furthermore, construction techniques often rely on specific choices of $\mathcal{K}$ which are not mutually compatible. In this work, we exhibit a diverse toolkit for constructing efficient lattice-based succinct arguments: \begin{enumerate} \item We identify new subtractive sets for general cyclotomic fields $\mathcal{K}$ and their maximal real subfields $\mathcal{K}^+$, which are useful as challenge sets, e.g. in arguments for exact norm bounds. \item We construct modular, verifier-succinct reductions of knowledge for the bounded-norm satisfiability of structured-linear/inner-product relations, without any soundness gap, under the vanishing SIS assumption, over any $\mathcal{K}$ which admits polynomial-size subtractive sets. \item We propose a framework to use twisted trace maps, i.e. maps of the form $\tau(z) = \frac{1}{N} \cdot \mathsf{Trace}_{\mathcal{K}/\mathbb{Q}}( \alpha \cdot z )$, to embed $\mathcal{R}$-inner-products as $\mathcal{R}$-inner-products for some structured subrings $\mathcal{R} \subseteq \mathcal{O}_\mathcal{K}$ whenever the conductor has a square-free odd part. \item We present a simple extension of our reductions of knowledge for proving the consistency between the coefficient embedding and the Chinese Remainder Transform (CRT) encoding of $\vec{s}$ over any cyclotomic field $\mathcal{K}$ with a smooth conductor, based on a succinct decomposition of the CRT map into automorphisms, and a new, simple succinct argument for proving automorphism relations. \end{enumerate} Combining all techniques, we obtain, for example, verifier-succinct arguments for proving that $\vec{s}$ satisfying $f(\mathbf{s}) = \mathbf{t} \bmod q$ has binary coefficients, without soundness gap and with polynomial-size modulus $q$.
2024
ASIACRYPT
Improved Quantum Lifting by Coherent Measure-and-Reprogram
We give a tighter lifting theorem for security games in the quantum random oracle model. At the core of our main result lies a novel measure-and-reprogram framework that we call coherent reprogramming. This framework gives a tighter lifting theorem for query complexity problems, that only requires purely classical reasoning. As direct applications of our lifting theorem, we first provide a quantum direct product theorem in the average case --- i.e., an enabling tool to determine the hardness of solving multi-instance security games. This allows us to derive in a straightforward manner the hardness of various security games, for example (i) the non-uniform hardness of salted games, (ii) the hardness of specific cryptographic tasks such as the multiple instance version of one-wayness and collision-resistance, and (iii) uniform or non-uniform hardness of many other games.
2024
ASIACRYPT
An Algorithmic Approach to $(2,2)$-isogenies in the Theta Model and Applications to Isogeny-based Cryptography
In this paper, we describe an algorithm to compute chains of $(2,2)$-isogenies between products of elliptic curves in the theta model. The description of the algorithm is split into various subroutines to allow for a precise field operation counting. We present a constant time implementation of our algorithm in Rust and an alternative implementation in SageMath. Our work in SageMath runs ten times faster than a comparable implementation of an isogeny chain using the Richelot correspondence. The Rust implementation runs up to forty times faster than the equivalent isogeny in SageMath and has been designed to be portable for future research in higher-dimensional isogeny-based cryptography.
2024
ASIACRYPT
Delegatable Anonymous Credentials From Mercurial Signatures With Stronger Privacy
Delegatable anonymous credentials (DACs) enable a root issuer to delegate credential-issuing power, allowing a delegatee to take a delegator role. To preserve privacy, credential recipients and verifiers should not learn anything about intermediate issuers in the delegation chain. One particularly efficient approach to constructing DACs is due to Crites and Lysyanskaya (CT-RSA '19). In contrast to previous approaches, it is based on mercurial signatures (a type of equivalence-class signature), offering a conceptually simple design that does not require extensive use of zero-knowledge proofs. Unfortunately, current constructions of ``CL-type'' DACs only offer a weak form of privacy-preserving delegation: if an adversarial issuer (even an honest-but-curious one) is part of a user's delegation chain, they can detect when the user shows its credential. This is because the underlying mercurial signature schemes allows a signer to identify his public key in a delegation chain. We propose CL-type DACs that overcome the above limitation based on a new mercurial signature scheme that provides adversarial public key class hiding which ensures that adversarial signers who participate in a user's delegation chain cannot exploit that fact to trace users. We achieve this introducing structured public parameters for each delegation level. Since the related setup produces critical trapdoors, we discuss techniques from updatable structured reference strings in zero-knowledge proof systems (Groth et al. CRYPTO '18) to guarantee the required privacy needs. In addition, we propose a simple way to realize revocation for CL-type DACs via the concept of revocation tokens. While we showcase this approach to revocation using our DAC scheme, it is generic and can be applied to any CL-type DAC system. Revocation is a vital feature that is largely unexplored and notoriously hard to achieve for DACs, thus providing it can help to make DAC schemes more attractive in practical applications.
2024
ASIACRYPT
Generic Differential Key Recovery Attacks and Beyond
At Asiacrypt 2022, a holistic key guessing strategy was proposed to yield the most efficient key recovery for the rectangle attack. Recently, at Crypto 2023, a new cryptanalysis technique--the differential meet-in-the-middle (MITM) attack--was introduced. Inspired by these two previous works, we present three generic key recovery attacks in this paper. First, we extend the holistic key guessing strategy from the rectangle to the differential attack, proposing the generic classical differential attack (GCDA). Next, we combine the holistic key guessing strategy with the differential MITM attack, resulting in the generalized differential MITM attack (GDMA). Finally, we apply the MITM technique to the rectangle attack, creating the generic rectangle MITM attack (GRMA). In terms of applications, we improve 12/13-round attacks on AES-256. For 12-round AES-256, by using the GDMA, we reduce the time complexity by a factor of 2^{62}; by employing the GCDA, we reduce both the time and memory complexities by factors of 2^{61} and 2^{56}, respectively. For 13-round AES-256, we present a new differential attack with data and time complexities of 2^{89} and 2^{240}, where the data complexity is 2^{37} times lower than previously published results. These are currently the best attacks on AES-256 using only two related keys. For KATAN-32, we increase the number of rounds covered by the differential attack from 115 to 151 in the single-key setting using the basic differential MITM attack (BDMA) and GDMA. Furthermore, we achieve the first 38-round rectangle attack on SKINNYe-64-256 v2 by using the GRMA.
2024
ASIACRYPT
SQIsign2D-West: The Fast, the Small, and the Safer
We introduce SQIsign2D-West, a variant of SQIsign using two-dimensional isogeny representations. SQIsignHD was the first variant of SQIsign to use higher dimensional isogeny representations. Its eight-dimensional variant is geared towards provable security but is deemed unpractical. Its four-dimensional variant is geared towards efficiency and has significantly faster signing times than SQIsign, but considerably slower verification owing to the complexity of the four-dimensional representation. Its authors commented on the apparent difficulty of getting any improvement over SQIsign by using two-dimensional representations. In this work, we introduce new algorithmic tools that make two-dimensional representations a viable alternative. These lead to a signature scheme with sizes comparable to SQIsignHD, slightly slower signing than SQIsignHD but still much faster than SQIsign, and the fastest verification of any known variant of SQIsign. We achieve this without compromising on the security proof: the assumptions behind SQIsign2D-West are similar to those of the eight-dimensional variant of SQIsignHD. Additionally, like SQIsignHD, SQIsign2D-West favourably scales to high levels of security. Concretely, for NIST level I we achieve signing times of 80ms and verifying times of 4.5ms, using optimised arithmetic based on intrinsics available to the Ice Lake architecture. For NIST level V, we achieve 470ms for signing and 31ms for verifying.
2024
ASIACRYPT
Low Communication Threshold Fully Homomorphic Encryption
We study constructions of threshold fully homomorphic encryption with small partial decryption shares. In this context, we discuss in details the technicalities for achieving full-fledged threshold FHE, and bring light to limitations regarding prior works, inclucing an attack against the recent construction from Boudgoust and Scholl [ASIACRYPT 2023]. In light of our observations, we generalize the definition of threshold fully homomorphic encryption by adding an algorithm which allows to sanitize evaluated ciphertexts before they are decrypted by parties. In this setting, we are able to propose a construction which offers small partial decryption shares and avoids exponential noise flooding during partial decryption. In addition, we also propose an alternative protocol based on circuit-private (non-threshold) FHE and threshold public-key encryption for private delegation of computation on joint data, but requires an additional round of communication compared to our threshold FHE construction.
2024
ASIACRYPT
Bootstrapping Small Integers With CKKS
The native plaintexts of the Cheon-Kim-Kim-Song (CKKS) fully homomorphic encryption scheme are vectors of approximations to complex numbers. Drucker \emph{et al} [J. Cryptol.'24] have showed how to use CKKS to efficiently perform computations on bits and small bit-length integers, by relying on their canonical embeddings into the complex plane. For small bit-length integers, Chung \emph{et al} [IACR eprint'24] recently suggested to rather rely on an embedding into complex roots of unity, to gain numerical stability and efficiency. Both works use CKKS in a black-box manner. Inspired by the design by Bae \emph{et al} [Eurocrypt'24] of a dedicated bootstrapping algorithm for ciphertexts encoding bits, we propose a CKKS bootstrapping algorithm, $\style{SI\mbox{-}BTS}$ (small-integer bootstrapping), for ciphertexts encoding small bit-length integers. For this purpose, we build upon the DM/CGGI-to-CKKS conversion algorithm from Boura \emph{et al} [J.~Math. Cryptol.'20], to bootstrap canonically embedded integers to integers embedded as roots of unity. $\style{SI\mbox{-}BTS}$ allows functional bootstrapping: it can evaluate an arbitrary function of its input while bootstrapping. It may also be used to batch-(functional-)bootstrap multiple DM/CGGI ciphertexts. For example, its amortized cost for evaluating an 8-bit look-up table on~$2^{12}$ DM/CGGI ciphertexts is~3.75ms (single-thread CPU, 128-bit security). We adapt $\style{SI\mbox{-}BTS}$ to simultaneously bootstrap multiple CKKS ciphertexts for bits. The resulting $\style{BB\mbox{-}BTS}$ algorithm (batch-bits bootstrapping) allows to decrease the amortized cost of a binary gate evaluation. Compared to Bae \emph{et al}, it gives a 2.4x speed-up.
2024
ASIACRYPT
C'est très CHIC: A compact password-authenticated key exchange from lattice-based KEM
Driven by the NIST's post-quantum standardization efforts and the selection of Kyber as a lattice-based Key-Encapsulation Mechanism (KEM), several Password Authenticated Key Exchange (PAKE) protocols have been recently proposed that leverage a KEM to create an efficient, easy-to-implement and secure PAKE. In two recent works, Beguinet et al. (ACNS 2023) and Pan and Zeng (ASIACRYPT 2023) proposed generic compilers that transform KEM into PAKE, relying on an Ideal Cipher (IC) defined over a group. However, although IC on a group is often used in cryptographic protocols, special care must be taken to instantiate such objects in practice, especially when a low-entropy key is used. To address this concern, Dos Santos et al. (EUROCRYPT 2023) proposed a relaxation of the IC model under the Universal Composability (UC) framework called Half-Ideal Cipher (HIC). They demonstrate how to construct a UC-secure PAKE protocol, EKE-KEM, from a KEM and a modified 2-round Feistel construction called m2F. Remarkably, the m2F sidesteps the use of an IC over a group, and instead employs an IC defined over a fixed-length bitstring domain, which is easier to instantiate. In this paper, we introduce a novel PAKE protocol called CHIC that improves the communication and computation efficiency of EKE-KEM, by avoiding the HIC abstraction. Instead, we split the KEM public key in two parts and use the m2F directly, without further randomization. We provide a detailed proof of the security of CHIC and establish precise security requirements for the underlying KEM, including one-wayness and anonymity of ciphertexts, and uniformity of public keys. Our findings extend to general KEM-based EKE-style protocols and show that a passively secure KEM is not sufficient. In this respect, our results align with those of Pan and Zeng (ASIACRYPT 2023), but contradict the analyses of KEM-to-PAKE compilers by Beguinet et al. (ACNS 2023) and Dos Santos et al. (EUROCRYPT 2023). Finally, we provide an implementation of CHIC, highlighting its minimal overhead compared to the underlying KEM -- Kyber. An interesting aspect of the implementation is that we reuse the rejection sampling procedure in Kyber reference code to address the challenge of hashing onto the public key space. As of now, to the best of our knowledge, CHIC stands as the most efficient PAKE protocol from black-box KEM that offers rigorously proven UC security.
2024
ASIACRYPT
Traitor Tracing without Trusted Authority from Registered Functional Encryption
Traitor-tracing systems allow identifying the users who contributed to building a rogue decoder in a broadcast environment. In a traditional traitor-tracing system, a key authority is responsible for generating the global public parameters and issuing secret keys to users. All security is lost if the \emph{key authority itself} is corrupt. This raises the question: Can we construct a traitor-tracing scheme, without a trusted authority? In this work, we propose a new model for traitor-tracing systems where, instead of having a key authority, users could generate and register their own public keys. The public parameters are computed by aggregating all user public keys. Crucially, the aggregation process is \emph{public}, thus eliminating the need of any trusted authority. We present two new traitor-tracing systems in this model based on bilinear pairings. Our first scheme is proven adaptively secure in the generic group model. This scheme features a {\it transparent} setup, ciphertexts consisting of $6\sqrt{L}+4$ group elements, and a public tracing algorithm. Our second scheme supports a bounded collusion of traitors and is proven selectively secure in the standard model. Our main technical ingredients are new registered functional encryption (RFE) schemes for quadratic and linear functions which, prior to this work, were known only from indistinguishability obfuscation. To substantiate the practicality of our approach, we evaluate the performance a proof of concept implementation. For a group of $L = 1024$ users, encryption and decryption take roughly 50ms and 4ms, respectively, whereas a ciphertext is of size 6.7KB.
2024
ASIACRYPT
On the Spinor Genus and the Distinguishing Lattice Isomorphism Problem
This paper addresses the spinor genus, a previously unrecognized classification of quadratic forms in the context of cryptography, related to the lattice isomorphism problem (LIP). The spinor genus lies between the genus and equivalence class, thus refining the concept of genus. We present algorithms to determine whether two quadratic forms belong to the same spinor genus. If they do not, it provides a negative answer to the distinguishing variant of LIP. However, these algorithms have very high complexity, and we show that the proportion of genera splitting into multiple spinor genera is vanishing (assuming rank n ≥ 3). For the special case of anisotropic integral binary forms (n = 2) over number fields with class number 1, we offer an efficient quantum algorithm to test if two forms lie in the same spinor genus. Our algorithm does not apply to the HAWK protocol, which uses integral binary Hermitian forms over number fields with class number greater than 1.
2024
ASIACRYPT
Revisiting Key Decomposition Techniques for FHE: Simpler, Faster and More Generic
Ring-LWE based homomorphic encryption computations in large depth use a combination of two techniques: 1) decomposition of big numbers into small limbs/digits, and 2) efficient cyclotomic multiplications modulo $X^N+1$. It was long believed that the two mechanisms had to be strongly related, like in the full-RNS setting that uses a CRT decomposition of big numbers over an NTT-friendly family of prime numbers, and NTT over the same primes for multiplications. However, in this setting, NTT was the bottleneck of all large-depth FHE computations. A breakthrough result from Kim et al. (Crypto'2023) managed to overcome this limitation by introducing a second gadget decomposition and showing that it indeed shifts the bottleneck and renders the cost of NTT computations negligible compared to the rest of the computation. In this paper, we extend this result (far) beyond the Full-RNS settings and show that we can completely decouple the big number decomposition from the cyclotomic arithmetic aspects. As a result, we get modulus switching/rescaling for free. We verify both in theory and in practice that the performance of key-switching, external and internal products and automorphisms using our representation are faster than the one achieved by Kim et al., and we discuss the high impact of these results for low-level or hardware optimizations as well as the benefits of the new parametrizations for FHE compilers. We even manage to lower the running time of the gate bootstrapping of $\TFHE$ by eliminating one eighth of the FFTs and one sixth of the linear operations, which lowers the running time below 5.5ms on recent CPUs.
2024
ASIACRYPT
Crooked Indifferentiability of the Feistel Construction
The Feistel construction is a fundamental technique for building pseudorandom permutations and block ciphers. This paper shows that a simple adaptation of the construction is resistant, even to algorithm substitution attacks---that is, adversarial subversion---of the component round functions. Specifically, we establish that a Feistel-based construction with more than $337n/\log(1/\epsilon)$ rounds can transform a subverted random function---which disagrees with the original one at a small fraction (denoted by $\epsilon$) of inputs---into an object that is \emph{crooked-indifferentiable} from a random permutation, even if the adversary is aware of all the randomness used in the transformation. Here, $n$ denotes the length of both the input and output of the round functions that underlie the Feistel cipher. We also provide a lower bound showing that the construction cannot use fewer than $2n/\log(1/\epsilon)$ rounds to achieve crooked-indifferentiable security.
2024
ASIACRYPT
On the Semidirect Discrete Logarithm Problem in Finite Groups
We present an efficient quantum algorithm for solving the semidirect discrete logarithm problem ($\SDLP$) in \emph{any} finite group. The believed hardness of the semidirect discrete logarithm problem underlies more than a decade of works constructing candidate post-quantum cryptographic algorithms from non-abelian groups. We use a series of reduction results to show that it suffices to consider $\SDLP$ in finite simple groups. We then apply the celebrated Classification of Finite Simple Groups to consider each family. The infinite families of finite simple groups admit, in a fairly general setting, linear algebraic attacks providing a reduction to the classical discrete logarithm problem. For the sporadic simple groups, we show that their inherent properties render them unsuitable for cryptographically hard $\SDLP$ instances, which we illustrate via a Baby-Step Giant-Step style attack against $\SDLP$ in the Monster Group. Our quantum $\SDLP$ algorithm is fully constructive, up to the computation of maximal normal subgroups, for all but three remaining cases that appear to be gaps in the literature on constructive recognition of groups; for these cases $\SDLP$ is no harder than finding a linear representation. We conclude that $\SDLP$ is not a suitable post-quantum hardness assumption for any choice of finite group.
2024
TCC
Depth-Reduction Algorithms for Directed Acyclic Graphs and Applications to Secure Multiparty Computation
We consider the graph-theoretic problem of removing (few) nodes from a directed acyclic graph in order to reduce its depth. While this problem is intractable in the general case, we provide a variety of algorithms in the case where the graph is that of a circuit of fan-in (at most) two, and explore applications of these algorithms to secure multiparty computation with low communication. Over the past few years, a paradigm for low-communication secure multiparty computation has found success based on decomposing a circuit into low-depth ``chunks''. This approach was however previously limited to circuits with a ``layered'' structure. Our graph-theoretic approach extends this paradigm to all circuits. In particular, we obtain the following contributions: 1) Fractionally linear-communication MPC in the correlated randomness model: We provide an $N$-party protocol for computing an $n$-input, $m$-output $\F$-arithmetic circuit with $s$ internal gates (over any basis of binary gates) with communication complexity $(\frac{2}{3}s + n + m)\cdot N\cdot\log |\F|$, which can be improved to $((1+\epsilon)\cdot\frac{2}{5}s+n+m)\cdot N\cdot\log |\F|$ (at the cost of increasing the computational overhead from a small constant factor to a large one). Previously, comparable protocols either used more than $s\cdot N\cdot \log |\F|$ bits of communication, required super-polynomial computation, were restricted to layered circuits, or tolerated a sub-optimal corruption threshold. 2) Sublinear-Communication MPC: Assuming the existence of $N$-party Homomorphic Secret Sharing for logarithmic depth circuits (respectively doubly logarithmic depth circuits), we show there exists sublinear-communication secure $N$-party computation for \emph{all} $\log^{1+o(1)}$-depth (resp.~$(\log\log)^{1+o(1)}$-depth) circuits. Previously, this result was limited to $(\mathcal{O}(\log))$-depth (resp.~$(\mathcal{O}(\log\log))$-depth) circuits, or to circuits with a specific structure (e.g. layered). 3) The 1-out-of-M-OT complexity of MPC: We introduce the `` 1-out-of-M-OT complexity of MPC'' of a function $f$, denoted $C_M(f)$, as the number of oracle calls required to securely compute $f$ in the 1-out-of-M-OT hybrid model. We establish the following upper bound: for every $M\geq 2$, $C_N(f) \leq (1+g(M))\cdot \frac{2 |f|}{5}$, where $g(M)$ is an explicit vanishing function. We also obtain additional contributions to reducing the amount of bootstrapping for fully homomorphic encryption, and to other types of sublinear-communication MPC protocols such as those based on correlated symmetric private information retrieval.
2024
ASIACRYPT
Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank
The MPC-in-the-Head (MPCitH) paradigm is widely used for building post-quantum signature schemes, as it provides a versatile way to design proofs of knowledge based on hard problems. Over the years, the MPCitH landscape has changed significantly, with the most recent improvements coming from VOLE-in-the-Head (VOLEitH) and Threshold-Computation-in-the-Head (TCitH). While a straightforward application of these frameworks already improve the existing MPCitH-based signatures, we show in this work that we can adapt the arithmetic constraints representing the underlying security assumptions (here called the modeling) to achieve smaller sizes using these new techniques. More precisely, we explore existing modelings for the rank syndrome decoding (RSD) and MinRank problems and we introduce a new modeling, named dual support decomposition, which achieves better sizes with the VOLEitH and TCitH frameworks by minimizing the size of the witnesses. While this modeling is naturally more efficient than the other ones for a large set of parameters, we show that it is possible to go even further and explore new areas of parameters. With these new modeling and parameters, we obtain low-size witnesses which drastically reduces the size of the ``arithmetic part'' of the signature. We apply our new modeling to both TCitH and VOLEitH frameworks and compare our results to RYDE, MiRitH, and MIRA signature schemes. We also note that recent techniques optimizing the sizes of GGM trees are applicable to our schemes and further reduce the signature sizes by a few hundred bytes. We obtain signature sizes below 3.5 kB for 128 bits of security with N=256 parties (a.k.a. leaves in the GGM trees) and going as low as 2.8 kB with N=2048, for both RSD and MinRank. This represents an improvement of more than 2\:kB compared to the original submissions to the 2023 NIST call for additional signatures.
2024
ASIACRYPT
One-More Unforgeability for Multi- and Threshold Signatures
This paper initiates the study of one-more unforgeability for multi-signatures and threshold signatures as a stronger security goal, ensuring that $\ell$ executions of a signing protocol cannot result in more than $\ell$ signatures. This notion is widely used in the context of blind signatures, but we argue that it is a convenient way to model strong unforgeability for other types of distributed signing protocols. We provide formal security definitions for one-more unforgeability (OMUF) and show that the HBMS multi-signature scheme does not satisfy this definition, whereas MuSig and MuSig2 do. In the full version of this paper, we also show that mBCJ does not satisfy OMUF, as well as expose a subtle issue with its existential unforgeability. For threshold signatures, FROST satisfies OMUF, but ROAST does not.