International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Benjamin Wesolowski

Publications

Year
Venue
Title
2019
EUROCRYPT
Efficient Verifiable Delay Functions 📺
Benjamin Wesolowski
We construct a verifiable delay function (VDF). A VDF is a function whose evaluation requires running a given number of sequential steps, yet the result can be efficiently verified. They have applications in decentralised systems, such as the generation of trustworthy public randomness in a trustless environment, or resource-efficient blockchains. To construct our VDF, we actually build a trapdoor VDF. A trapdoor VDF is essentially a VDF which can be evaluated efficiently by parties who know a secret (the trapdoor). By setting up this scheme in a way that the trapdoor is unknown (not even by the party running the setup, so that there is no need for a trusted setup environment), we obtain a simple VDF. Our construction is based on groups of unknown order such as an RSA group, or the class group of an imaginary quadratic field. The output of our construction is very short (the result and the proof of correctness are each a single element of the group), and the verification of correctness is very efficient.
2019
CRYPTO
On the Shortness of Vectors to Be Found by the Ideal-SVP Quantum Algorithm 📺
Léo Ducas Maxime Plançon Benjamin Wesolowski
The hardness of finding short vectors in ideals of cyclotomic number fields (hereafter, Ideal-SVP) can serve as a worst-case assumption for numerous efficient cryptosystems, via the average-case problems Ring-SIS and Ring-LWE. For a while, it could be assumed the Ideal-SVP problem was as hard as the analog problem for general lattices (SVP), even when considering quantum algorithms.But in the last few years, a series of works has lead to a quantum algorithm for Ideal-SVP that outperforms what can be done for general SVP in certain regimes. More precisely, it was demonstrated (under certain hypotheses) that one can find in quantum polynomial time a vector longer by a factor at most $$\alpha = \exp ({\widetilde{O}(n^{1/2})})$$ than the shortest non-zero vector in a cyclotomic ideal lattice, where n is the dimension.In this work, we explore the constants hidden behind this asymptotic claim. While these algorithms have quantum steps, the steps that impact the approximation factor $$\alpha $$ are entirely classical, which allows us to estimate it experimentally using only classical computing. Moreover, we design heuristic improvements for those steps that significantly decrease the hidden factors in practice. Finally, we derive new provable effective lower bounds based on volumetric arguments.This study allows to predict the crossover point with classical lattice reduction algorithms, and thereby determine the relevance of this quantum algorithm in any cryptanalytic context. For example we predict that this quantum algorithm provides shorter vectors than BKZ-300 (roughly the weakest security level of NIST lattice-based candidates) for cyclotomic rings of rank larger than about 24000.
2017
EUROCRYPT
2015
EPRINT
2015
EPRINT