International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Qipeng Liu

Publications

Year
Venue
Title
2021
CRYPTO
New Approaches for Quantum Copy-Protection 📺
Quantum copy protection uses the unclonability of quantum states to construct quantum software that provably cannot be pirated. Copy protection would be immensely useful, but unfortunately little is known about how to achieve it in general. In this work, we make progress on this goal, by giving the following results: * We show how to copy protect any program that cannot be learned from its input-output behavior, relative to a classical oracle. This improves on Aaronson (CCC 2009), which achieves the same relative to a quantum oracle. By instantiating the oracle with post-quantum candidate obfuscation schemes, we obtain a heuristic construction of copy protection. * We show, roughly, that any program which can be watermarked can be copy detected, a weaker version of copy protection that does not prevent copying, but guarantees that any copying can be detected. Our scheme relies on the security of the assumed watermarking, plus the assumed existence of public key quantum money. Our construction is general, applicable to many recent watermarking schemes.
2021
CRYPTO
Hidden Cosets and Applications to Unclonable Cryptography 📺
In 2012, Aaronson and Christiano introduced the idea of hidden subspace states to build public-key quantum money [STOC '12]. Since then, this idea has been applied to realize several other cryptographic primitives which enjoy some form of unclonability. In this work, we propose a generalization of hidden subspace states to hidden coset states. We study different unclonable properties of coset states and several applications: * We show that, assuming indistinguishability obfuscation (iO), hidden coset states possess a certain direct product hardness property, which immediately implies a tokenized signature scheme in the plain model. Previously, a tokenized signature scheme was known only relative to an oracle, from a work of Ben-David and Sattath [QCrypt '17]. * Combining a tokenized signature scheme with extractable witness encryption, we give a construction of an unclonable decryption scheme in the plain model. The latter primitive was recently proposed by Georgiou and Zhandry [ePrint '20], who gave a construction relative to a classical oracle. * We conjecture that coset states satisfy a certain natural monogamy-of-entanglement property. Assuming this conjecture is true, we remove the requirement for extractable witness encryption in our unclonable decryption construction. As potential evidence in support of the conjecture, we prove a weaker version of this monogamy property, which we believe will still be of independent interest. * Finally, we give the first construction of a copy-protection scheme for pseudorandom functions (PRFs) in the plain model. Our scheme is secure either assuming iO and extractable witness encryption, or iO, LWE and the conjectured monogamy property mentioned above. This is the first example of a copy-protection scheme with provable security in the plain model for a class of functions that is not evasive.
2021
TCC
Unifying Presampling via Concentration Bounds
Auxiliary-input (AI) idealized models, such as auxiliary-input random oracle model (AI-ROM) and auxiliary-input random permutation model (AI-PRM), play a critical role in assessing non-uniform security of symmetric key and hash function constructions. However, obtaining security bounds in these models is often much more challenging. The presampling technique, introduced by Unruh (CRYPTO' 07), generically reduces security proofs in the auxiliary-input models to much simpler bit-fixing models. This technique has been further optimized by Coretti, Dodis, Guo, Steinberger (EUROCRYPT' 18), and generalized by Coretti, Dodis, Guo (CRYPTO' 18), resulting in powerful tools for proving non-uniform security bounds in various idealized models. We study the possibility of leveraging the presampling technique to the quantum world. To this end, (*) We show that such leveraging will {resolve a major open problem in quantum computing, which is closely related to the famous Aaronson-Ambainis conjecture (ITCS' 11). (*) Faced with this barrier, we give a new but equivalent bit-fixing model and a simple proof of presampling techniques for arbitrary oracle distribution in the classical setting, including AI-ROM and AI-RPM. Our theorem matches the best-known security loss and unifies previous presampling techniques. (*) Finally, we leverage our new classical presampling techniques to a novel ``quantum bit-fixing'' version of presampling. It matches the optimal security loss of the classical presampling. Using our techniques, we give the first post-quantum non-uniform security for salted Merkle-Damgard hash functions and reprove the tight non-uniform security for function inversion by Chung et al. (FOCS' 20).
2019
EUROCRYPT
On Finding Quantum Multi-collisions 📺
Qipeng Liu Mark Zhandry
A k-collision for a compressing hash function H is a set of k distinct inputs that all map to the same output. In this work, we show that for any constant k, $$\varTheta \left( N^{\frac{1}{2}(1-\frac{1}{2^k-1})}\right) $$ quantum queries are both necessary and sufficient to achieve a k-collision with constant probability. This improves on both the best prior upper bound (Hosoyamada et al., ASIACRYPT 2017) and provides the first non-trivial lower bound, completely resolving the problem.
2019
CRYPTO
Revisiting Post-quantum Fiat-Shamir 📺
Qipeng Liu Mark Zhandry
The Fiat-Shamir transformation is a useful approach to building non-interactive arguments (of knowledge) in the random oracle model. Unfortunately, existing proof techniques are incapable of proving the security of Fiat-Shamir in the quantum setting. The problem stems from (1) the difficulty of quantum rewinding, and (2) the inability of current techniques to adaptively program random oracles in the quantum setting. In this work, we show how to overcome the limitations above in many settings. In particular, we give mild conditions under which Fiat-Shamir is secure in the quantum setting. As an application, we show that existing lattice signatures based on Fiat-Shamir are secure without any modifications.
2017
TCC