International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Ilan Komargodski

Affiliation: Cornell Tech

Publications

Year
Venue
Title
2019
EUROCRYPT
Distributional Collision Resistance Beyond One-Way Functions 📺
Distributional collision resistance is a relaxation of collision resistance that only requires that it is hard to sample a collision (x, y) where x is uniformly random and y is uniformly random conditioned on colliding with x. The notion lies between one-wayness and collision resistance, but its exact power is still not well-understood. On one hand, distributional collision resistant hash functions cannot be built from one-way functions in a black-box way, which may suggest that they are stronger. On the other hand, so far, they have not yielded any applications beyond one-way functions.Assuming distributional collision resistant hash functions, we construct constant-round statistically hiding commitment scheme. Such commitments are not known based on one-way functions, and are impossible to obtain from one-way functions in a black-box way. Our construction relies on the reduction from inaccessible entropy generators to statistically hiding commitments by Haitner et al. (STOC ’09). In the converse direction, we show that two-message statistically hiding commitments imply distributional collision resistance, thereby establishing a loose equivalence between the two notions.A corollary of the first result is that constant-round statistically hiding commitments are implied by average-case hardness in the class $${\textsf {SZK}}$$ (which is known to imply distributional collision resistance). This implication seems to be folklore, but to the best of our knowledge has not been proven explicitly. We provide yet another proof of this implication, which is arguably more direct than the one going through distributional collision resistance.
2019
JOFC
Hardness-Preserving Reductions via Cuckoo Hashing
The focus of this work is hardness-preserving transformations of somewhat limited pseudorandom functions families (PRFs) into ones with more versatile characteristics. Consider the problem of domain extension of pseudorandom functions: given a PRF that takes as input elements of some domain $$\mathcal {U}$$U, we would like to come up with a PRF over a larger domain. Can we do it with little work and without significantly impacting the security of the system? One approach is to first hash the larger domain into the smaller one and then apply the original PRF. Such a reduction, however, is vulnerable to a “birthday attack”: after $$\sqrt{\left| \mathcal {U}\right| }$$U queries to the resulting PRF, a collision (i.e., two distinct inputs having the same hash value) is very likely to occur. As a consequence, the resulting PRF is insecure against an attacker making this number of queries. In this work, we show how to go beyond the aforementioned birthday attack barrier by replacing the above simple hashing approach with a variant of cuckoo hashing, a hashing paradigm that resolves collisions in a table by using two hash functions and two tables, cleverly assigning each element to one of the two tables. We use this approach to obtain: (i) a domain extension method that requires just two calls to the original PRF can withstand as many queries as the original domain size, and has a distinguishing probability that is exponentially small in the amount of non-cryptographic work; and (ii) a security-preserving reduction from non-adaptive to adaptive PRFs.
2019
CRYPTO
Non-Uniformly Sound Certificates with Applications to Concurrent Zero-Knowledge
Cody Freitag Ilan Komargodski Rafael Pass
We introduce the notion of non-uniformly sound certificates: succinct single-message (unidirectional) argument systems that satisfy a “best-possible security” against non-uniform polynomial-time attackers. In particular, no polynomial-time attacker with s bits of non-uniform advice can find significantly more than s accepting proofs for false statements. Our first result is a construction of non-uniformly sound certificates for all $$\mathbf{NP }$$ in the random oracle model, where the attacker’s advice can depend arbitrarily on the random oracle.We next show that the existence of non-uniformly sound certificates for $$\mathbf{P }$$ (and collision resistant hash functions) yields a public-coin constant-round fully concurrent zero-knowledge argument for $$\mathbf{NP } $$.
2018
JOFC
2018
JOFC
2018
EUROCRYPT
2018
EUROCRYPT
2018
EUROCRYPT
2018
CRYPTO
On the Complexity of Compressing Obfuscation 📺
Indistinguishability obfuscation has become one of the most exciting cryptographic primitives due to its far reaching applications in cryptography and other fields. However, to date, obtaining a plausibly secure construction has been an illusive task, thus motivating the study of seemingly weaker primitives that imply it, with the possibility that they will be easier to construct.In this work, we provide a systematic study of compressing obfuscation, one of the most natural and simple to describe primitives that is known to imply indistinguishability obfuscation when combined with other standard assumptions. A compressing obfuscator is roughly an indistinguishability obfuscator that outputs just a slightly compressed encoding of the truth table. This generalizes notions introduced by Lin et al. (PKC 2016) and Bitansky et al. (TCC 2016) by allowing for a broader regime of parameters.We view compressing obfuscation as an independent cryptographic primitive and show various positive and negative results concerning its power and plausibility of existence, demonstrating significant differences from full-fledged indistinguishability obfuscation.First, we show that as a cryptographic building block, compressing obfuscation is weak. In particular, when combined with one-way functions, it cannot be used (in a black-box way) to achieve public-key encryption, even under (sub-)exponential security assumptions. This is in sharp contrast to indistinguishability obfuscation, which together with one-way functions implies almost all cryptographic primitives.Second, we show that to construct compressing obfuscation with perfect correctness, one only needs to assume its existence with a very weak correctness guarantee and polynomial hardness. Namely, we show a correctness amplification transformation with optimal parameters that relies only on polynomial hardness assumptions. This implies a universal construction assuming only polynomially secure compressing obfuscation with approximate correctness. In the context of indistinguishability obfuscation, we know how to achieve such a result only under sub-exponential security assumptions together with derandomization assumptions.Lastly, we characterize the existence of compressing obfuscation with statistical security. We show that in some range of parameters and for some classes of circuits such an obfuscator exists, whereas it is unlikely to exist with better parameters or for larger classes of circuits. These positive and negative results reveal a deep connection between compressing obfuscation and various concepts in complexity theory and learning theory.
2018
CRYPTO
On Distributional Collision Resistant Hashing 📺
Ilan Komargodski Eylon Yogev
Collision resistant hashing is a fundamental concept that is the basis for many of the important cryptographic primitives and protocols. Collision resistant hashing is a family of compressing functions such that no efficient adversary can find any collision given a random function in the family.In this work we study a relaxation of collision resistance called distributional collision resistance, introduced by Dubrov and Ishai (STOC ’06). This relaxation of collision resistance only guarantees that no efficient adversary, given a random function in the family, can sample a pair (x, y) where x is uniformly random and y is uniformly random conditioned on colliding with x.Our first result shows that distributional collision resistance can be based on the existence of multi-collision resistance hash (with no additional assumptions). Multi-collision resistance is another relaxation of collision resistance which guarantees that an efficient adversary cannot find any tuple of $$k>2$$ inputs that collide relative to a random function in the family. The construction is non-explicit, non-black-box, and yields an infinitely-often secure family. This partially resolves a question of Berman et al. (EUROCRYPT ’18). We further observe that in a black-box model such an implication (from multi-collision resistance to distributional collision resistance) does not exist.Our second result is a construction of a distributional collision resistant hash from the average-case hardness of SZK. Previously, this assumption was not known to imply any form of collision resistance (other than the ones implied by one-way functions).
2017
EUROCRYPT
2017
CRYPTO
2017
ASIACRYPT
2017
TCC
2017
JOFC
2016
EUROCRYPT
2016
TCC
2016
TCC
2016
TCC
2016
TCC
2015
EPRINT
2015
EPRINT
2015
TCC
2014
EPRINT
2014
EPRINT
2014
ASIACRYPT
2013
TCC

Program Committees

Eurocrypt 2019
Asiacrypt 2018