International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Ilan Komargodski

Publications

Year
Venue
Title
2021
EUROCRYPT
Decentralized Multi-Authority ABE for DNFs from LWE 📺
Pratish Datta Ilan Komargodski Brent Waters
We construct the first decentralized multi-authority attribute-based encryption (????????-????????????) scheme for a non-trivial class of access policies whose security is based (in the random oracle model) solely on the Learning With Errors (LWE) assumption. The supported access policies are ones described by ???????????? formulas. All previous constructions of ????????-???????????? schemes supporting any non-trivial class of access policies were proven secure (in the random oracle model) assuming various assumptions on bilinear maps. In our system, any party can become an authority and there is no requirement for any global coordination other than the creation of an initial set of common reference parameters. A party can simply act as a standard ABE authority by creating a public key and issuing private keys to different users that reflect their attributes. A user can encrypt data in terms of any ???????????? formulas over attributes issued from any chosen set of authorities. Finally, our system does not require any central authority. In terms of efficiency, when instantiating the scheme with a global bound ???? on the size of access policies, the sizes of public keys, secret keys, and ciphertexts, all grow with ????. Technically, we develop new tools for building ciphertext-policy ABE (????????-????????????) schemes using LWE. Along the way, we construct the first provably secure ????????-???????????? scheme supporting access policies in ????????^1 under the LWE assumption that avoids the generic universal-circuit-based key-policy to ciphertext-policy transformation. In particular, our construction relies on linear secret sharing schemes with new properties and in some sense is more similar to ????????-???????????? schemes that rely on bilinear maps. While our ????????-???????????? construction is not more efficient than existing ones, it is conceptually intriguing and further we show how to extend it to get the ????????-???????????? scheme described above.
2021
EUROCRYPT
Multi-Party Reusable Non-Interactive Secure Computation from LWE 📺
Motivated by the goal of designing versatile and flexible secure computation protocols that at the same time require as little interaction as possible, we present new multiparty reusable Non-Interactive Secure Computation (mrNISC) protocols. This notion, recently introduced by Benhamouda and Lin (TCC 2020), is essentially two-round Multi-Party Computation (MPC) protocols where the first round of messages serves as a reusable commitment to the private inputs of participating parties. Using these commitments, any subset of parties can later compute any function of their choice on their respective inputs by just sending a single message to a stateless evaluator, conveying the result of the computation but nothing else. Importantly, the input commitments can be computed without knowing anything about other participating parties (neither their identities nor their number) and they are reusable across any number of desired computations. We give a construction of mrNISC that achieves standard simulation security, as classical multi-round MPC protocols achieve. Our construction relies on the Learning With Errors (LWE) assumption with polynomial modulus, and on the existence of a pseudorandom function (PRF) in $\mathsf{NC}^1$. We achieve semi-malicious security in the plain model and malicious security by further relying on trusted setup (which is unavoidable for mrNISC). In comparison, the only previously known constructions of mrNISC were either using bilinear maps or using strong primitives such as program obfuscation. We use our mrNISC to obtain new Multi-Key FHE (MKFHE) schemes with threshold decryption: - In the CRS model, we obtain threshold MKFHE for $\mathsf{NC}^1$ based on LWE with only {\em polynomial} modulus and PRFs in $\mathsf{NC}^1$, whereas all previous constructions rely on LWE with super-polynomial modulus-to-noise ratio. - In the plain model, we obtain threshold levelled MKFHE for $\mathsf{P}$ based on LWE with {\em polynomial} modulus, PRF in $\mathsf{NC}^1$, and NTRU, and another scheme for constant number of parties from LWE with sub-exponential modulus-to-noise ratio. The only known prior construction of threshold MKFHE (Ananth et al., TCC 2020) in the plain model restricts the set of parties who can compute together at the onset.
2021
CRYPTO
A Logarithmic Lower Bound for Oblivious RAM (for all parameters) 📺
Ilan Komargodski Wei-Kai Lin
An Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky (J. ACM 1996), is a (probabilistic) RAM that hides its access pattern, i.e., for every input the observed locations accessed are similarly distributed. In recent years there has been great progress both in terms of upper bounds as well as in terms of lower bounds, essentially pinning down the smallest overhead possible in various settings of parameters. We observe that there is a very natural setting of parameters in which \emph{no} non-trivial lower bound is known, even not ones in restricted models of computation (like the so called balls and bins model). Let $N$ and $w$ be the number of cells and bit-size of cells, respectively, in the RAM that we wish to simulate obliviously. Denote by $b$ the cell bit-size of the ORAM. \emph{All} previous ORAM lower bounds have a multiplicative $w/b$ factor which makes them trivial in many settings of parameters of interest. In this work, we prove a new ORAM lower bound that captures this setting (and in all other settings it is at least as good as previous ones, quantitatively). We show that any ORAM must make (amortized) $$ \Omega\left(\log \left(\frac{Nw}{m}\right)/\log\left(\frac{b}{w}\right)\right) $$ memory probes for every logical operation. Here, $m$ denotes the bit-size of the local storage of the ORAM. Our lower bound implies that logarithmic overhead in accesses is necessary, even if $ b \gg w$. Our lower bound is tight for \emph{all} settings of parameters, up to the $\log(b/w)$ factor. Our bound also extends to the non-colluding multi-server setting. As an application, we derive the first (unconditional) separation between the overhead needed for ORAMs in the \emph{online} vs.\ \emph{offline} models. Specifically, we show that when $w=\log N$ and $b,m \in poly\log N$, there exists an offline ORAM that makes (on average) $o(1)$ memory probes per logical operation while every online one must make $\Omega(\log N/\log\log N)$ memory probes per logical operation. No such previous separation was known for any setting of parameters, not even in the balls and bins model.
2021
CRYPTO
Oblivious RAM with Worst-Case Logarithmic Overhead 📺
We present the first Oblivious RAM (ORAM) construction that for $N$ memory blocks supports accesses with \emph{worst-case} $O(\log N)$ overhead for any block size $\Omega(\log N)$ while requiring a client memory of only a constant number of memory blocks. We rely on the existence of one-way functions and guarantee computational security. Our result closes a long line of research on fundamental feasibility results for ORAM constructions as logarithmic overhead is necessary. The previous best logarithmic overhead construction only guarantees it in an \emph{amortized} sense, i.e., logarithmic overhead is achieved only for long enough access sequences, where some of the individual accesses incur $\Theta(N)$ overhead. The previously best ORAM in terms of \emph{worst-case} overhead achieves $O(\log^2 N/\log\log N)$ overhead. Technically, we design a novel de-amortization framework for modern ORAM constructions that use the ``shuffled inputs'' assumption. Our framework significantly departs from all previous de-amortization frameworks, originating from Ostrovsky and Shoup (STOC~'97), that seem to be fundamentally too weak to be applied on modern ORAM constructions.
2021
CRYPTO
Non-Malleable Codes for Bounded Parallel-Time Tampering 📺
Dana Dachman-Soled Ilan Komargodski Rafael Pass
Non-malleable codes allow one to encode data in such a way that once a codeword is being tampered with, the modified codeword is either an encoding of the original message, or a completely unrelated one. Since the introduction of this notion by Dziembowski, Pietrzak, and Wichs (ICS '10 and J. ACM '18), there has been a large body of works realizing such coding schemes secure against various classes of tampering functions. It is well known that there is no efficient non-malleable code secure against all polynomial size tampering functions. Nevertheless, no code which is non-malleable for \emph{bounded} polynomial size attackers is known and obtaining such a code has been a major open problem. We present the first construction of a non-malleable code secure against all polynomial size tampering functions that have {bounded} parallel time. This is an even larger class than all bounded polynomial size functions. In particular, this class includes all functions in non-uniform $\mathbf{NC}$ (and much more). Our construction is in the plain model (i.e., no trusted setup) and relies on several cryptographic assumptions such as keyless hash functions, time-lock puzzles, as well as other standard assumptions. Additionally, our construction has several appealing properties: the complexity of encoding is independent of the class of tampering functions and we can obtain (sub-)exponentially small error.
2021
TCC
Non-Malleable Time-Lock Puzzles and Applications 📺
Time-lock puzzles are a mechanism for sending messages "to the future", by allowing a sender to quickly generate a puzzle with an underlying message that remains hidden until a receiver spends a moderately large amount of time solving it. We introduce and construct a variant of a time-lock puzzle which is non-malleable, which roughly guarantees that it is impossible to "maul" a puzzle into one for a related message without solving it. Using non-malleable time-lock puzzles, we achieve the following applications: - The first fair non-interactive multi-party protocols for coin flipping and auctions in the plain model without setup. - Practically efficient fair multi-party protocols for coin flipping and auctions proven secure in the (auxiliary-input) random oracle model. As a key step towards proving the security of our protocols, we introduce the notion of functional non-malleability, which protects against tampering attacks that affect a specific function of the related messages. To support an unbounded number of participants in our protocols, our time-lock puzzles satisfy functional non-malleability in the fully concurrent setting. We additionally show that standard (non-functional) non-malleability is impossible to achieve in the concurrent setting (even in the random oracle model).
2020
EUROCRYPT
OptORAMa: Optimal Oblivious RAM 📺
Oblivious RAM (ORAM), first introduced in the ground-breaking work of Goldreich and Ostrovsky (STOC '87 and J. ACM '96) is a technique for provably obfuscating programs' access patterns, such that the access patterns leak no information about the programs' secret inputs. To compile a general program to an oblivious counterpart, it is well-known that $\Omega(\log N)$ amortized blowup is necessary, where $N$ is the size of the logical memory. This was shown in Goldreich and Ostrovksy's original ORAM work for statistical security and in a somewhat restricted model (the so called \emph{balls-and-bins} model), and recently by Larsen and Nielsen (CRYPTO '18) for computational security. A long standing open question is whether there exists an optimal ORAM construction that matches the aforementioned logarithmic lower bounds (without making large memory word assumptions, and assuming a constant number of CPU registers). In this paper, we resolve this problem and present the first secure ORAM with $O(\log N)$ amortized blowup, assuming one-way functions. Our result is inspired by and non-trivially improves on the recent beautiful work of Patel et al. (FOCS '18) who gave a construction with $O(\log N\cdot \log\log N)$ amortized blowup, assuming one-way functions. One of our building blocks of independent interest is a linear-time deterministic oblivious algorithm for tight compaction: Given an array of $n$ elements where some elements are marked, we permute the elements in the array so that all marked elements end up in the front of the array. Our $O(n)$ algorithm improves the previously best known deterministic or randomized algorithms whose running time is $O(n \cdot\log n)$ or $O(n \cdot\log \log n)$, respectively.
2020
EUROCRYPT
Continuous Verifiable Delay Functions 📺
We introduce the notion of a continuous verifiable delay function (cVDF): a function g which is (a) iteratively sequential---meaning that evaluating the iteration $g^{(t)}$ of g (on a random input) takes time roughly t times the time to evaluate g, even with many parallel processors, and (b) (iteratively) verifiable---the output of $g^{(t)}$ can be efficiently verified (in time that is essentially independent of t). In other words, the iterated function $g^{(t)}$ is a verifiable delay function (VDF) (Boneh et al., CRYPTO '18), having the property that intermediate steps of the computation (i.e., $g^{(t')}$ for t'<t) are publicly and continuously verifiable. We demonstrate that cVDFs have intriguing applications: (a) they can be used to construct public randomness beacons that only require an initial random seed (and no further unpredictable sources of randomness), (b) enable outsourceable VDFs where any part of the VDF computation can be verifiably outsourced, and (c) have deep complexity-theoretic consequences: in particular, they imply the existence of depth-robust moderately-hard Nash equilibrium problem instances, i.e. instances that can be solved in polynomial time yet require a high sequential running time. Our main result is the construction of a cVDF based on the repeated squaring assumption and the soundness of the Fiat-Shamir (FS) heuristic for constant-round proofs. We highlight that when viewed as a (plain) VDF, our construction requires a weaker FS assumption than previous ones (earlier constructions require the FS heuristic for either super-logarithmic round proofs, or for arguments).
2020
EUROCRYPT
SPARKs: Succinct Parallelizable Arguments of Knowledge 📺
We introduce the notion of a Succinct Parallelizable Argument of Knowledge (SPARK). This is an argument system with the following three properties for computing and proving a time T (non-deterministic) computation: - The prover's (parallel) running time is T + polylog T. (In other words, the prover's running time is essentially T for large computation times!) - The prover uses at most polylog T processors. - The communication complexity and verifier complexity are both polylog T. While the third property is standard in succinct arguments, the combination of all three is desirable as it gives a way to leverage moderate parallelism in favor of near-optimal running time. We emphasize that even a factor two overhead in the prover's parallel running time is not allowed. Our main results are the following, all for non-deterministic polynomial-time RAM computation. We construct (1) an (interactive) SPARK based solely on the existence of collision-resistant hash functions, and (2) a non-interactive SPARK based on any collision-resistant hash function and any SNARK with quasi-linear overhead (as satisfied by recent SNARK constructions).
2020
TCC
Secure Massively Parallel Computation for Dishonest Majority 📺
Rex Fernando Ilan Komargodski Yanyi Liu Elaine Shi
This work concerns secure protocols in the massively parallel computation (MPC) model, which is one of the most widely-accepted models for capturing the challenges of writing protocols for the types of parallel computing clusters which have become commonplace today (MapReduce, Hadoop, Spark, etc.). Recently, the work of Chan et al. (ITCS ’20) initiated this study, giving a way to compile any MPC protocol into a secure one in the common random string model, achieving the standard secure multi-party computation definition of security with up to 1/3 of the parties being corrupt. We are interested in achieving security for much more than 1/3 corruptions. To that end, we give two compilers for MPC protocols, which assume a simple public-key infrastructure, and achieve semi-honest security for all-but-one corruptions. Our first compiler assumes hardness of the learning-with-errors (LWE) problem, and works for any MPC protocol with “short” output—that is, where the output of the protocol can fit into the storage space of one machine, for instance protocols that output a trained machine learning model. Our second compiler works for any MPC protocol (even ones with a long output, such as sorting) but assumes, in addition to LWE, indistinguishability obfuscation and a circular secure variant of threshold FHE.
2019
EUROCRYPT
Distributional Collision Resistance Beyond One-Way Functions 📺
Distributional collision resistance is a relaxation of collision resistance that only requires that it is hard to sample a collision (x, y) where x is uniformly random and y is uniformly random conditioned on colliding with x. The notion lies between one-wayness and collision resistance, but its exact power is still not well-understood. On one hand, distributional collision resistant hash functions cannot be built from one-way functions in a black-box way, which may suggest that they are stronger. On the other hand, so far, they have not yielded any applications beyond one-way functions.Assuming distributional collision resistant hash functions, we construct constant-round statistically hiding commitment scheme. Such commitments are not known based on one-way functions, and are impossible to obtain from one-way functions in a black-box way. Our construction relies on the reduction from inaccessible entropy generators to statistically hiding commitments by Haitner et al. (STOC ’09). In the converse direction, we show that two-message statistically hiding commitments imply distributional collision resistance, thereby establishing a loose equivalence between the two notions.A corollary of the first result is that constant-round statistically hiding commitments are implied by average-case hardness in the class $${\textsf {SZK}}$$ (which is known to imply distributional collision resistance). This implication seems to be folklore, but to the best of our knowledge has not been proven explicitly. We provide yet another proof of this implication, which is arguably more direct than the one going through distributional collision resistance.
2019
JOFC
Hardness-Preserving Reductions via Cuckoo Hashing
The focus of this work is hardness-preserving transformations of somewhat limited pseudorandom functions families (PRFs) into ones with more versatile characteristics. Consider the problem of domain extension of pseudorandom functions: given a PRF that takes as input elements of some domain $$\mathcal {U}$$U, we would like to come up with a PRF over a larger domain. Can we do it with little work and without significantly impacting the security of the system? One approach is to first hash the larger domain into the smaller one and then apply the original PRF. Such a reduction, however, is vulnerable to a “birthday attack”: after $$\sqrt{\left| \mathcal {U}\right| }$$U queries to the resulting PRF, a collision (i.e., two distinct inputs having the same hash value) is very likely to occur. As a consequence, the resulting PRF is insecure against an attacker making this number of queries. In this work, we show how to go beyond the aforementioned birthday attack barrier by replacing the above simple hashing approach with a variant of cuckoo hashing, a hashing paradigm that resolves collisions in a table by using two hash functions and two tables, cleverly assigning each element to one of the two tables. We use this approach to obtain: (i) a domain extension method that requires just two calls to the original PRF can withstand as many queries as the original domain size, and has a distinguishing probability that is exponentially small in the amount of non-cryptographic work; and (ii) a security-preserving reduction from non-adaptive to adaptive PRFs.
2019
CRYPTO
Non-Uniformly Sound Certificates with Applications to Concurrent Zero-Knowledge 📺
Cody Freitag Ilan Komargodski Rafael Pass
We introduce the notion of non-uniformly sound certificates: succinct single-message (unidirectional) argument systems that satisfy a “best-possible security” against non-uniform polynomial-time attackers. In particular, no polynomial-time attacker with s bits of non-uniform advice can find significantly more than s accepting proofs for false statements. Our first result is a construction of non-uniformly sound certificates for all $$\mathbf{NP }$$ in the random oracle model, where the attacker’s advice can depend arbitrarily on the random oracle.We next show that the existence of non-uniformly sound certificates for $$\mathbf{P }$$ (and collision resistant hash functions) yields a public-coin constant-round fully concurrent zero-knowledge argument for $$\mathbf{NP } $$.
2019
JOFC
From Minicrypt to Obfustopia via Private-Key Functional Encryption
Ilan Komargodski Gil Segev
Private-key functional encryption enables fine-grained access to symmetrically encrypted data. Although private-key functional encryption (supporting an unbounded number of keys and ciphertexts) seems significantly weaker than its public-key variant, its known realizations all rely on public-key functional encryption. At the same time, however, up until recently it was not known to imply any public-key primitive, demonstrating our poor understanding of this primitive. Bitansky et al. (Theory of cryptography—14th international conference, TCC 2016-B, 2016 ) showed that sub-exponentially secure private-key function encryption bridges from nearly exponential security in Minicrypt to slightly super-polynomial security in Cryptomania, and from sub-exponential security in Cryptomania to Obfustopia. Specifically, given any sub-exponentially secure private-key functional encryption scheme and a nearly exponentially secure one-way function, they constructed a public-key encryption scheme with slightly super-polynomial security. Assuming, in addition, a sub-exponentially secure public-key encryption scheme, they then constructed an indistinguishability obfuscator (or a public-key functional encryption scheme if the given building blocks are polynomially secure). We show that quasi-polynomially secure private-key functional encryption bridges from sub-exponential security in Minicrypt all the way to Cryptomania. First, given any quasi-polynomially secure private-key functional encryption scheme, we construct an indistinguishability obfuscator for circuits with inputs of poly-logarithmic length. Then, we observe that such an obfuscator can be used to instantiate many natural applications of indistinguishability obfuscation. Specifically, relying on sub-exponentially secure one-way functions, we show that quasi-polynomially secure private-key functional encryption implies not just public-key encryption but leads all the way to public-key functional encryption for circuits with inputs of poly-logarithmic length. Moreover, relying on sub-exponentially secure injective one-way functions, we show that quasi-polynomially secure private-key functional encryption implies a hard-on-average distribution over instances of a PPAD-complete problem. Underlying our constructions is a new transformation from single-input functional encryption to multi-input functional encryption in the private-key setting. The previously known such transformation (Brakerski et al. J Cryptol 31(2):434–520, 2018 ) required a sub-exponentially secure single-input scheme, and obtained a scheme supporting only a slightly super-constant number of inputs. Our transformation both relaxes the underlying assumption and supports more inputs: Given any quasi-polynomially secure single-input scheme, we obtain a scheme supporting a poly-logarithmic number of inputs.
2018
JOFC
2018
JOFC
2018
EUROCRYPT
2018
EUROCRYPT
2018
EUROCRYPT
2018
CRYPTO
On the Complexity of Compressing Obfuscation 📺
Indistinguishability obfuscation has become one of the most exciting cryptographic primitives due to its far reaching applications in cryptography and other fields. However, to date, obtaining a plausibly secure construction has been an illusive task, thus motivating the study of seemingly weaker primitives that imply it, with the possibility that they will be easier to construct.In this work, we provide a systematic study of compressing obfuscation, one of the most natural and simple to describe primitives that is known to imply indistinguishability obfuscation when combined with other standard assumptions. A compressing obfuscator is roughly an indistinguishability obfuscator that outputs just a slightly compressed encoding of the truth table. This generalizes notions introduced by Lin et al. (PKC 2016) and Bitansky et al. (TCC 2016) by allowing for a broader regime of parameters.We view compressing obfuscation as an independent cryptographic primitive and show various positive and negative results concerning its power and plausibility of existence, demonstrating significant differences from full-fledged indistinguishability obfuscation.First, we show that as a cryptographic building block, compressing obfuscation is weak. In particular, when combined with one-way functions, it cannot be used (in a black-box way) to achieve public-key encryption, even under (sub-)exponential security assumptions. This is in sharp contrast to indistinguishability obfuscation, which together with one-way functions implies almost all cryptographic primitives.Second, we show that to construct compressing obfuscation with perfect correctness, one only needs to assume its existence with a very weak correctness guarantee and polynomial hardness. Namely, we show a correctness amplification transformation with optimal parameters that relies only on polynomial hardness assumptions. This implies a universal construction assuming only polynomially secure compressing obfuscation with approximate correctness. In the context of indistinguishability obfuscation, we know how to achieve such a result only under sub-exponential security assumptions together with derandomization assumptions.Lastly, we characterize the existence of compressing obfuscation with statistical security. We show that in some range of parameters and for some classes of circuits such an obfuscator exists, whereas it is unlikely to exist with better parameters or for larger classes of circuits. These positive and negative results reveal a deep connection between compressing obfuscation and various concepts in complexity theory and learning theory.
2018
CRYPTO
On Distributional Collision Resistant Hashing 📺
Ilan Komargodski Eylon Yogev
Collision resistant hashing is a fundamental concept that is the basis for many of the important cryptographic primitives and protocols. Collision resistant hashing is a family of compressing functions such that no efficient adversary can find any collision given a random function in the family.In this work we study a relaxation of collision resistance called distributional collision resistance, introduced by Dubrov and Ishai (STOC ’06). This relaxation of collision resistance only guarantees that no efficient adversary, given a random function in the family, can sample a pair (x, y) where x is uniformly random and y is uniformly random conditioned on colliding with x.Our first result shows that distributional collision resistance can be based on the existence of multi-collision resistance hash (with no additional assumptions). Multi-collision resistance is another relaxation of collision resistance which guarantees that an efficient adversary cannot find any tuple of $$k>2$$ inputs that collide relative to a random function in the family. The construction is non-explicit, non-black-box, and yields an infinitely-often secure family. This partially resolves a question of Berman et al. (EUROCRYPT ’18). We further observe that in a black-box model such an implication (from multi-collision resistance to distributional collision resistance) does not exist.Our second result is a construction of a distributional collision resistant hash from the average-case hardness of SZK. Previously, this assumption was not known to imply any form of collision resistance (other than the ones implied by one-way functions).
2017
EUROCRYPT
2017
CRYPTO
2017
ASIACRYPT
2017
TCC
2017
JOFC
2016
EUROCRYPT
2016
TCC
2016
TCC
2016
TCC
2016
TCC
2015
EPRINT
2015
EPRINT
2015
TCC
2014
EPRINT
2014
EPRINT
2014
ASIACRYPT
2013
TCC

Program Committees

TCC 2020
Eurocrypt 2019
Asiacrypt 2018