International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Benedikt Bünz

Publications

Year
Venue
Title
2021
CRYPTO
Proof-Carrying Data without Succinct Arguments 📺
Proof-carrying data (PCD) is a powerful cryptographic primitive that enables mutually distrustful parties to perform distributed computations that run indefinitely. Known approaches to construct PCD are based on succinct non-interactive arguments of knowledge (SNARKs) that have a succinct verifier or a succinct accumulation scheme. In this paper we show how to obtain PCD without relying on SNARKs. We construct a PCD scheme given any non-interactive argument of knowledge (e.g., with linear-size arguments) that has a *split accumulation scheme*, which is a weak form of accumulation that we introduce. Moreover, we construct a transparent non-interactive argument of knowledge for R1CS whose split accumulation is verifiable via a (small) *constant number of group and field operations*. Our construction is proved secure in the random oracle model based on the hardness of discrete logarithms, and it leads, via the random oracle heuristic and our result above, to concrete efficiency improvements for PCD. Along the way, we construct a split accumulation scheme for Hadamard products under Pedersen commitments and for a simple polynomial commitment scheme based on Pedersen commitments. Our results are supported by a modular and efficient implementation.
2020
EUROCRYPT
Transparent SNARKs from DARK Compilers 📺
Benedikt Bünz Ben Fisch Alan Szepieniec
We construct a new polynomial commitment scheme for univariate and multivariate polynomials over finite fields, with public-coin evaluation proofs that have logarithmic communication and verification cost in the number of coefficients of the polynomial. The underlying technique is a Diophantine Argument of Knowledge (DARK), leveraging integer representations of polynomials and groups of unknown order. Security is shown from the strong RSA and the adaptive root assumption. Moreover, the scheme does not require a trusted setup if instantiated with class groups. We apply this new cryptographic compiler to a restricted class of algebraic linear IOPs in order to obtain doubly-efficient public-coin IPs with succinct communication and witness-extended emulation for any NP relation. Allowing for linear preprocessing, the online verifier's work is logarithmic in the circuit complexity of the relation. Concretely, we obtain quasi-linear prover time when compiling the IOP employed in Sonic(MBKM, CCS 19). Applying the Fiat-Shamir transform in the random oracle model results in a SNARK system with quasi-linear preprocessing, quasi-linear (online) prover time, logarithmic proof size, and logarithmic (online) verification time for arbitrary circuits. The SNARK is also concretely efficient with 8.4KB proofs and 75ms verification time for circuits with 1 million gates. Most importantly, this SNARK is transparent: it does not require a trusted setup. We also obtain zk-SNARKs by applying a variant of our polynomial commitment scheme that is hiding and offers zero-knowledge evaluation proofs. This construction is the first transparent zk-SNARK that has both a practical prover time as well as strictly logarithmic proof size and verification time. We call our system Supersonic.
2020
TCC
Proof-Carrying Data from Accumulation Schemes 📺
Recursive proof composition has been shown to lead to powerful primitives such as incrementally-verifiable computation (IVC) and proof-carrying data (PCD). All existing approaches to recursive composition take a succinct non-interactive argument of knowledge (SNARK) and use it to prove a statement about its own verifier. This technique requires that the verifier run in time sublinear in the size of the statement it is checking, a strong requirement that restricts the class of SNARKs from which PCD can be built. This in turn restricts the efficiency and security properties of the resulting scheme. Bowe, Grigg, and Hopwood (ePrint 2019/1021) outlined a novel approach to recursive composition, and applied it to a particular SNARK construction which does *not* have a sublinear-time verifier. However, they omit details about this approach and do not prove that it satisfies any security property. Nonetheless, schemes based on their ideas have already been implemented in software. In this work we present a collection of results that establish the theoretical foundations for a generalization of the above approach. We define an *accumulation scheme* for a non-interactive argument, and show that this suffices to construct PCD, even if the argument itself does not have a sublinear-time verifier. Moreover we give constructions of accumulation schemes for SNARKs, which yield PCD schemes with novel efficiency and security features.
2019
CRYPTO
Batching Techniques for Accumulators with Applications to IOPs and Stateless Blockchains 📺
Dan Boneh Benedikt Bünz Ben Fisch
We present batching techniques for cryptographic accumulators and vector commitments in groups of unknown order. Our techniques are tailored for distributed settings where no trusted accumulator manager exists and updates to the accumulator are processed in batches. We develop techniques for non-interactively aggregating membership proofs that can be verified with a constant number of group operations. We also provide a constant sized batch non-membership proof for a large number of elements. These proofs can be used to build the first positional vector commitment (VC) with constant sized openings and constant sized public parameters. As a core building block for our batching techniques we develop several succinct proof systems in groups of unknown order. These extend a recent construction of a succinct proof of correct exponentiation, and include a succinct proof of knowledge of an integer discrete logarithm between two group elements. We circumvent an impossibility result for Sigma-protocols in these groups by using a short trapdoor-free CRS. We use these new accumulator and vector commitment constructions to design a stateless blockchain, where nodes only need a constant amount of storage in order to participate in consensus. Further, we show how to use these techniques to reduce the size of IOP instantiations, such as STARKs. The full version of the paper is available online [BBF18b].
2018
CRYPTO
Verifiable Delay Functions 📺
We study the problem of building a verifiable delay function (VDF). A $$\text {VDF}$$VDFrequires a specified number of sequential steps to evaluate, yet produces a unique output that can be efficiently and publicly verified. $$\text {VDF}$$VDFs have many applications in decentralized systems, including public randomness beacons, leader election in consensus protocols, and proofs of replication. We formalize the requirements for $$\text {VDF}$$VDFs and present new candidate constructions that are the first to achieve an exponential gap between evaluation and verification time.
2015
EPRINT