## CryptoDB

### Alex B. Grilo

#### Publications

**Year**

**Venue**

**Title**

2024

CIC

Towards the Impossibility of Quantum Public Key Encryption with Classical Keys from One-Way Functions
Abstract

<p> There has been a recent interest in proposing quantum protocols whose security relies on weaker computational assumptions than their classical counterparts. Importantly to our work, it has been recently shown that public-key encryption (PKE) from one-way functions (OWF) is possible if we consider quantum public keys. Notice that we do not expect classical PKE from OWF given the impossibility results of Impagliazzo and Rudich (STOC'89).</p><p> However, the distribution of quantum public keys is a challenging task. Therefore, the main question that motivates our work is if quantum PKE from OWF is possible if we have classical public keys. Such protocols are impossible if ciphertexts are also classical, given the impossibility result of Austrin et al.(CRYPTO'22) of quantum enhanced key-agreement (KA) with classical communication.</p><p> In this paper, we focus on black-box separation for PKE with classical public key and quantum ciphertext from OWF under the polynomial compatibility conjecture, first introduced in Austrin et al.. More precisely, we show the separation when the decryption algorithm of the PKE does not query the OWF. We prove our result by extending the techniques of Austrin et al. and we show an attack for KA in an extended classical communication model where the last message in the protocol can be a quantum state. </p>

2023

TCC

Public-Key Encryption with Quantum Keys
Abstract

In the framework of Impagliazzo's five worlds, a distinction is often made between two worlds, one where public-key encryption exists (Cryptomania), and one in which only one-way functions exist (MiniCrypt). However, the boundaries between these worlds can change when quantum information is taken into account. Recent work has shown that quantum variants of oblivious transfer and multi-party computation, both primitives that are classically in Cryptomania, can be constructed from one-way functions, placing them in the realm of quantum MiniCrypt (the so-called MiniQCrypt). This naturally raises the following question:
Is it possible to construct a quantum variant of public-key encryption, which is at the heart of Cryptomania, from one-way functions or potentially weaker assumptions?
In this work, we initiate the formal study of the notion of quantum public-key encryption (qPKE), i.e., public-key encryption where keys are allowed to be quantum states. We propose new definitions of security and several constructions of qPKE based on the existence of one-way functions (OWF), or even weaker assumptions, such as pseudorandom function-like states (PRFS) and pseudorandom function-like states with proof of destruction (PRFSPD). Finally, to give a tight characterization of this primitive, we show that computational assumptions are necessary to build quantum public-key encryption. That is, we give a self-contained proof that no quantum public-key encryption scheme can provide information-theoretic security.

2021

EUROCRYPT

Oblivious Transfer is in MiniQCrypt
📺
Abstract

MiniQCrypt is a world where quantum-secure one-way functions exist, and quantum communication is possible. We construct an oblivious transfer (OT) protocol in MiniQCrypt that achieves simulation-security against malicious quantum polynomial-time adversaries, building on the foundational work of Bennett, Brassard, Crepeau and Skubiszewska (CRYPTO 1991). Combining the OT protocol with prior works, we obtain secure two-party and multi-party computation protocols also in MiniQCrypt. This is in contrast to the classical world, where it is widely believed that OT does not exist in MiniCrypt.

2021

ASIACRYPT

Tight adaptive reprogramming in the QROM
📺
Abstract

The random oracle model (ROM) enjoys widespread popularity, mostly because it tends to allow for tight and conceptually simple proofs where provable security in the standard model is elusive or costly. While being the adequate replacement of the ROM in the post-quantum security setting, the quantum-accessible random oracle model (QROM) has thus far failed to provide these advantages in many settings. In this work, we focus on adaptive reprogrammability, a feature of the ROM enabling tight and simple proofs in many settings. We show that the straightforward quantum-accessible generalization of adaptive reprogramming is feasible by proving a bound on the adversarial advantage in distinguishing whether a random oracle has been reprogrammed or not. We show that our bound is tight by providing a matching attack. We go on to demonstrate that our technique recovers the mentioned advantages of the ROM in three QROM applications: 1) We give a tighter proof of security of the message compression routine as used by XMSS.
2) We show that the standard ROM proof of chosen-message security for Fiat-Shamir signatures can be lifted to the QROM, straightforwardly, achieving a tighter reduction than previously known.
3) We give the first QROM proof of security against fault injection and nonce attacks for the hedged Fiat-Shamir transform.

2020

EUROCRYPT

Secure Multi-party Quantum Computation with a Dishonest Majority
📺
Abstract

The cryptographic task of secure multi-party (classical) computation has received a lot of attention in the last decades. Even in the extreme case where a computation is performed between k mutually distrustful players, and security is required even for the single honest player if all other players are colluding adversaries, secure protocols are known. For quantum computation, on the other hand, protocols allowing arbitrary dishonest majority have only been proven for k=2. In this work, we generalize the approach taken by Dupuis, Nielsen and Salvail (CRYPTO 2012) in the two-party setting to devise a secure, efficient protocol for multi-party quantum computation for any number of players k, and prove security against up to k-1 colluding adversaries. The quantum round complexity of the protocol for computing a quantum circuit of {CNOT, T} depth d is O(k (d + log n)), where n is the security parameter. To achieve efficiency, we develop a novel public verification protocol for the Clifford authentication code, and a testing protocol for magic-state inputs, both using classical multi-party computation.

2020

TCC

Non-interactive classical verification of quantum computation
📺
Abstract

In a recent breakthrough, Mahadev constructed an interactive protocol that enables a purely classical party to delegate any quantum computation to an untrusted quantum prover. We show that this same task can in fact be performed non-interactively (with setup) and in zero-knowledge.
Our protocols result from a sequence of significant improvements to the original four-message protocol of Mahadev. We begin by making the first message instance-independent and moving it to an offline setup phase. We then establish a parallel repetition theorem for the resulting three-message protocol, with an asymptotically optimal rate. This, in turn, enables an application of the Fiat-Shamir heuristic, eliminating the second message and giving a non-interactive protocol. Finally, we employ classical non-interactive zero-knowledge (NIZK) arguments and classical fully homomorphic encryption (FHE) to give a zero-knowledge variant of this construction. This yields the first purely classical NIZK argument system for QMA, a quantum analogue of NP.
We establish the security of our protocols under standard assumptions in quantum-secure cryptography. Specifically, our protocols are secure in the Quantum Random Oracle Model, under the assumption that Learning with Errors is quantumly hard. The NIZK construction also requires circuit-private FHE.

2019

EUROCRYPT

Verifier-on-a-Leash: New Schemes for Verifiable Delegated Quantum Computation, with Quasilinear Resources
📺
Abstract

The problem of reliably certifying the outcome of a computation performed by a quantum device is rapidly gaining relevance. We present two protocols for a classical verifier to verifiably delegate a quantum computation to two non-communicating but entangled quantum provers. Our protocols have near-optimal complexity in terms of the total resources employed by the verifier and the honest provers, with the total number of operations of each party, including the number of entangled pairs of qubits required of the honest provers, scaling as
$$O(g\log g)$$
for delegating a circuit of size g. This is in contrast to previous protocols, whose overhead in terms of resources employed, while polynomial, is far beyond what is feasible in practice. Our first protocol requires a number of rounds that is linear in the depth of the circuit being delegated, and is blind, meaning neither prover can learn the circuit or its input. The second protocol is not blind, but requires only a constant number of rounds of interaction.Our main technical innovation is an efficient rigidity theorem which allows a verifier to test that two entangled provers perform measurements specified by an arbitrary m-qubit tensor product of single-qubit Clifford observables on their respective halves of m shared EPR pairs, with a robustness that is independent of m. Our two-prover classical-verifier delegation protocols are obtained by combining this rigidity theorem with a single-prover quantum-verifier protocol for the verifiable delegation of a quantum computation, introduced by Broadbent.

#### Program Committees

- Asiacrypt 2021

#### Coauthors

- Gorjan Alagic (1)
- Khashayar Barooti (1)
- Samuel Bouaziz–Ermann (1)
- Andrew M. Childs (1)
- Andrea Coladangelo (1)
- Yfke Dulek (1)
- Alex B. Grilo (7)
- Kathrin Hövelmanns (1)
- Loïs Huguenin-Dumittan (1)
- Andreas Hülsing (1)
- Shih-Han Hung (1)
- Stacey Jeffery (2)
- Huijia Lin (1)
- Christian Majenz (2)
- Giulio Malavolta (1)
- Or Sattath (1)
- Christian Schaffner (1)
- Fang Song (1)
- Vinod Vaikuntanathan (1)
- Damien Vergnaud (1)
- Thomas Vidick (1)
- Quoc-Huy Vu (2)
- Michael Walter (1)