International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Alex B. Grilo

Publications

Year
Venue
Title
2021
EUROCRYPT
Oblivious Transfer is in MiniQCrypt
MiniQCrypt is a world where quantum-secure one-way functions exist, and quantum communication is possible. We construct an oblivious transfer (OT) protocol in MiniQCrypt that achieves simulation-security against malicious quantum polynomial-time adversaries, building on the foundational work of Bennett, Brassard, Crepeau and Skubiszewska (CRYPTO 1991). Combining the OT protocol with prior works, we obtain secure two-party and multi-party computation protocols also in MiniQCrypt. This is in contrast to the classical world, where it is widely believed that OT does not exist in MiniCrypt.
2020
EUROCRYPT
Secure Multi-party Quantum Computation with a Dishonest Majority 📺
The cryptographic task of secure multi-party (classical) computation has received a lot of attention in the last decades. Even in the extreme case where a computation is performed between k mutually distrustful players, and security is required even for the single honest player if all other players are colluding adversaries, secure protocols are known. For quantum computation, on the other hand, protocols allowing arbitrary dishonest majority have only been proven for k=2. In this work, we generalize the approach taken by Dupuis, Nielsen and Salvail (CRYPTO 2012) in the two-party setting to devise a secure, efficient protocol for multi-party quantum computation for any number of players k, and prove security against up to k-1 colluding adversaries. The quantum round complexity of the protocol for computing a quantum circuit of {CNOT, T} depth d is O(k (d + log n)), where n is the security parameter. To achieve efficiency, we develop a novel public verification protocol for the Clifford authentication code, and a testing protocol for magic-state inputs, both using classical multi-party computation.
2020
TCC
Non-interactive classical verification of quantum computation 📺
In a recent breakthrough, Mahadev constructed an interactive protocol that enables a purely classical party to delegate any quantum computation to an untrusted quantum prover. We show that this same task can in fact be performed non-interactively (with setup) and in zero-knowledge. Our protocols result from a sequence of significant improvements to the original four-message protocol of Mahadev. We begin by making the first message instance-independent and moving it to an offline setup phase. We then establish a parallel repetition theorem for the resulting three-message protocol, with an asymptotically optimal rate. This, in turn, enables an application of the Fiat-Shamir heuristic, eliminating the second message and giving a non-interactive protocol. Finally, we employ classical non-interactive zero-knowledge (NIZK) arguments and classical fully homomorphic encryption (FHE) to give a zero-knowledge variant of this construction. This yields the first purely classical NIZK argument system for QMA, a quantum analogue of NP. We establish the security of our protocols under standard assumptions in quantum-secure cryptography. Specifically, our protocols are secure in the Quantum Random Oracle Model, under the assumption that Learning with Errors is quantumly hard. The NIZK construction also requires circuit-private FHE.
2019
EUROCRYPT
Verifier-on-a-Leash: New Schemes for Verifiable Delegated Quantum Computation, with Quasilinear Resources 📺
The problem of reliably certifying the outcome of a computation performed by a quantum device is rapidly gaining relevance. We present two protocols for a classical verifier to verifiably delegate a quantum computation to two non-communicating but entangled quantum provers. Our protocols have near-optimal complexity in terms of the total resources employed by the verifier and the honest provers, with the total number of operations of each party, including the number of entangled pairs of qubits required of the honest provers, scaling as $$O(g\log g)$$ for delegating a circuit of size g. This is in contrast to previous protocols, whose overhead in terms of resources employed, while polynomial, is far beyond what is feasible in practice. Our first protocol requires a number of rounds that is linear in the depth of the circuit being delegated, and is blind, meaning neither prover can learn the circuit or its input. The second protocol is not blind, but requires only a constant number of rounds of interaction.Our main technical innovation is an efficient rigidity theorem which allows a verifier to test that two entangled provers perform measurements specified by an arbitrary m-qubit tensor product of single-qubit Clifford observables on their respective halves of m shared EPR pairs, with a robustness that is independent of m. Our two-prover classical-verifier delegation protocols are obtained by combining this rigidity theorem with a single-prover quantum-verifier protocol for the verifiable delegation of a quantum computation, introduced by Broadbent.