International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Pedro Branco

Publications

Year
Venue
Title
2021
PKC
Multiparty Cardinality Testing for Threshold Private Set Intersection
Pedro Branco Nico Döttling Sihang Pu
Threshold Private Set Intersection (PSI) allows multiple parties to compute the intersection of their input sets if and only if the intersection is larger than $n-t$, where $n$ is the size of the sets and $t$ is some threshold. The main appeal of this primitive is that, in contrast to standard PSI, known upper-bounds on the communication complexity only depend on the threshold $t$ and not on the sizes of the input sets. Current Threshold PSI protocols split themselves into two components: A Cardinality Testing phase, where parties decide if the intersection is larger than some threshold; and a PSI phase, where the intersection is computed. The main source of inefficiency of Threshold PSI is the former part. In this work, we present a new Cardinality Testing protocol that allows $N$ parties to check if the intersection of their input sets is larger than $n-t$. The protocol incurs in $\tilde{ \mathcal{O}} (Nt^2)$ communication complexity. We thus obtain a Threshold PSI scheme for $N$ parties with communication complexity $\tilde{ \mathcal{O}}(Nt^2)$.
2020
TCC
Constant Ciphertext-Rate Non-Committing Encryption from Standard Assumptions 📺
Non-committing encryption (NCE) is a type of public key encryption which comes with the ability to equivocate ciphertexts to encryptions of arbitrary messages, i.e., it allows one to find coins for key generation and encryption which ``explain'' a given ciphertext as an encryption of any message. NCE is the cornerstone to construct adaptively secure multiparty computation [Canetti et al. STOC'96] and can be seen as the quintessential notion of security for public key encryption to realize ideal communication channels. A large body of literature investigates what is the best message-to-ciphertext ratio (i.e., the rate) that one can hope to achieve for NCE. In this work we propose a near complete resolution to this question and we show how to construct NCE with constant rate in the plain model from a variety of assumptions, such as the hardness of the learning with errors (LWE), the decisional Diffie-Hellman (DDH), or the quadratic residuosity (QR) problem. Prior to our work, constructing NCE with constant rate required a trusted setup and indistinguishability obfuscation [Canetti et al. ASIACRYPT'17].