International Association for Cryptologic Research

International Association
for Cryptologic Research


Sophia Yakoubov

Affiliation: MIT Lincoln Laboratory


The Rise of Paillier: Homomorphic Secret Sharing and Public-Key Silent OT
Claudio Orlandi Peter Scholl Sophia Yakoubov
We describe a simple method for solving the distributed discrete logarithm problem in Paillier groups, allowing two parties to locally convert multiplicative shares of a secret (in the exponent) into additive shares. Our algorithm is perfectly correct, unlike previous methods with an inverse polynomial error probability. We obtain the following applications and further results. – Homomorphic secret sharing: We construct homomorphic secret sharing for branching programs with negligible correctness error and supporting exponentially large plaintexts, with security based on the decisional composite residuosity (DCR) assumption. – Correlated pseudorandomness: Pseudorandom correlation functions (PCFs), recently introduced by Boyle et al. (FOCS 2020), allow two parties to obtain a practically unbounded quantity of correlated randomness, given a pair of short, correlated keys. We construct PCFs for the oblivious transfer (OT) and vector oblivious linear evaluation (VOLE) correlations, based on the quadratic residuosity (QR) or DCR assumptions, respectively. We also construct a pseudorandom correlation generator (for producing a bounded number of samples, all at once) for OLE, based on a combination of the DCR and learning parity with noise assumptions. – Public-keysilentOT/VOLE: We upgrade our PCF constructions to have a public-key setup, where after independently posting a public key, each party can locally derive its PCF key. This allows completely silent generation of an arbitrary amount of OTs or VOLEs, without any interaction beyond a PKI, based on QR and DCR. The public-key setup is based on a novel non-interactive vector OLE protocol which can be seen as a variant of the Bellare-Micali oblivious transfer protocol.
Stronger Security and Constructions of Multi-Designated Verifier Signatures 📺
Off-the-Record (OTR) messaging is a two-party message authentication protocol that also provides plausible deniability: there is no record that can later convince a third party what messages were actually sent. The challenge in group OTR, is to enable the sender to sign his messages so that group members can verify who sent a message (signatures should be unforgeable, even by group members). Also, we want the off-the-record property: even if some verifiers are corrupt and collude, they should not be able to prove the authenticity of a message to any outsider. Finally, we need consistency, meaning that if any group member accepts a signature, then all of them do. To achieve these properties it is natural to consider Multi-Designated Verifier Signatures (MDVS). However, existing literature defines and builds only limited notions of MDVS, where (a) the off-the-record property (source hiding) only holds when all verifiers could conceivably collude, and (b) the consistency property is not considered. The contributions of this paper are two-fold: stronger definitions for MDVS, and new constructions meeting those definitions. We strengthen source-hiding to support any subset of corrupt verifiers, and give the first formal definition of consistency. We build three new MDVS: one from generic standard primitives (PRF, key agreement, NIZK), one with concrete efficiency and one from functional encryption.