CryptoDB
Rentaro Shiba
Publications and invited talks
Year
Venue
Title
2025
TOSC
Divide-and-Conquer SAT for Exploring Optimal Differential and Linear Characteristics and Its Applications
Abstract
Developing automatic search tools to derive optimal characteristics is crucial for both the design and cryptanalysis of symmetric-key primitives. However, evaluating primitives that employ large S-boxes and complex linear layers remains a computationally demanding task. In this paper, we introduce a novel solver-aided automatic search tool based on the divide-and-conquer strategy that leverages the advantages of both MILP and SAT methods. Our method divides a given SAT model into multiple smaller SAT models, allowing to pre-eliminate as much of the space of Boolean variable assignments that make a given SAT model always “UNSAT”. In addition, we propose a new method for large S-boxes that involves the decimal parts of values, enabling us to efficiently derive optimal linear characteristics for a large S-box-based primitive, all within a practical time for the first time. The new tool is able to obtain optimal differential and linear characteristics in the significant number of rounds of AES, Camellia without FL function, ARIA, LED, Midori-128, SKINNY- 128, and Rijndael-256-256. Our results improve the required number of rounds for differential and linear attacks, based on a single characteristic, for Camellia, LED, and Midori-128. Besides, our tool identifies the longest distinguisher for extensivelyanalyzed ciphers of Camellia/ARIA/Midori-128 and SKINNY-128 by optimal linear and differential ones, respectively.
2023
TCHES
Areion: Highly-Efficient Permutations and Its Applications to Hash Functions for Short Input
Abstract
In the real-world applications, the overwhelming majority of cases require hashing with relatively short input, say up to 2K bytes. The length of almost all TCP/IP packets is between 40 to 1.5K bytes, and the maximum packet lengths of major protocols, e.g., Zigbee, Bluetooth low energy, and Controller Area Network (CAN) are less than 128 bytes. However, existing schemes are not well optimized for short input. To bridge the gap between real-world needs (in future) and limited performances of state-of-the-art hash functions for short input, we design a family of wide-block permutations Areion that fully leverages the power of AES instructions, which are widely deployed in many devices. As its applications, we propose several hash functions. Areion significantly outperforms existing schemes for short input and even competitive to relatively long message. Indeed, our hash function is surprisingly fast, and its performance is less than 3 cycles/byte in the latest Intel architecture for any message size. Especially, it is about 10 times faster than existing state-of-the-art schemes for short message up to around 100 bytes, which are most widely-used input size in real-world applications, on both the latest CPU architectures (IceLake, Tiger Lake, and Alder Lake) and mobile platforms (Pixel 6 and iPhone 13).
Coauthors
- Takanori Isobe (2)
- Ryoma Ito (2)
- Fukang Liu (1)
- Kazuhiko Minematsu (1)
- Motoki Nakahashi (1)
- Kosei Sakamoto (2)
- Rentaro Shiba (2)
- Kazuma Taka (1)
- Shion Utsumi (1)