International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Charalampos Papamanthou

Publications

Year
Venue
Title
2022
CRYPTO
Gossiping for Communication-Efficient Broadcast
Georgios Tsimos Julian Loss Charalampos Papamanthou
Byzantine Broadcast is crucial for many cryptographic protocols such as secret sharing, multiparty computation and blockchain consensus. In this paper we apply \emph{gossiping} (propagating a message by sending to a few random parties who in turn do the same, until the message is delivered) and propose new communication-efficient protocols, under dishonest majority, for Single-Sender Broadcast (BC) and Parallel Broadcast (PBC), improving the state-of-the-art in several ways. As our first warm-up result, we give a randomized protocol for BC which achieves $O(n^2\kappa^2)$ communication complexity from plain public key setup assumptions. This is the first protocol with subcubic communication in this setting, but does so only against static adversaries. Using some ideas from our BC protocol, we then move to our central contribution and present two protocols for PBC that are secure against adaptive adversaries. To the best of our knowledge we are the first to study PBC \emph{specifically}: All previous approaches for parallel BC (PBC) naively run $n$ instances of single-sender Broadcast, increasing the communication complexity by an undesirable factor of $n$. Our insight of avoiding black-box invocations of BC is particularly crucial for achieving our asymptotic improvements. In particular: \begin{enumerate} \item Our first PBC protocol achieves $\tilde{O}(n^3\kappa^2)$ communication complexity and relies only on plain public key setup assumptions. \item Our second PBC protocol uses trusted setup and achieves nearly optimal communication complexity $\tilde{O}(n^2\kappa^4)$. \end{enumerate} Both PBC protocols yield an almost linear improvement over the best known solutions involving $n$ parallel invocations of the respective BC protocols such as those of Dolev and Strong (SIAM Journal on Computing, 1983) and Chan et al. (Public Key Cryptography, 2020). Central to our PBC protocols is a new problem that we define and solve, that we call ``{Converge}''. In {Converge}, parties must run an adaptively-secure and \emph{efficient} protocol such that by the end of the protocol, the honest parties that remain possess a superset of the union of the inputs of the initial honest parties.
2019
CRYPTO
Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 📺
We present Libra, the first zero-knowledge proof system that has both optimal prover time and succinct proof size/verification time. In particular, if C is the size of the circuit being proved (i) the prover time is O(C) irrespective of the circuit type; (ii) the proof size and verification time are both $$O(d\log C)$$ for d-depth log-space uniform circuits (such as RAM programs). In addition Libra features an one-time trusted setup that depends only on the size of the input to the circuit and not on the circuit logic. Underlying Libra is a new linear-time algorithm for the prover of the interactive proof protocol by Goldwasser, Kalai and Rothblum (also known as GKR protocol), as well as an efficient approach to turn the GKR protocol to zero-knowledge using small masking polynomials. Not only does Libra have excellent asymptotics, but it is also efficient in practice. For example, our implementation shows that it takes 200 s to generate a proof for constructing a SHA2-based Merkle tree root on 256 leaves, outperforming all existing zero-knowledge proof systems. Proof size and verification time of Libra are also competitive.
2019
JOFC
Oblivious Network RAM and Leveraging Parallelism to Achieve Obliviousness
Oblivious RAM (ORAM) is a cryptographic primitive that allows a trusted CPU to securely access untrusted memory, such that the access patterns reveal nothing about sensitive data. ORAM is known to have broad applications in secure processor design and secure multiparty computation for big data. Unfortunately, due to a logarithmic lower bound by Goldreich and Ostrovsky (J ACM 43(3):431–473, 1996 ), ORAM is bound to incur a moderate cost in practice. In particular, with the latest developments in ORAM constructions, we are quickly approaching this limit, and the room for performance improvement is small. In this paper, we consider new models of computation in which the cost of obliviousness can be fundamentally reduced in comparison with the standard ORAM model. We propose the oblivious network RAM model of computation, where a CPU communicates with multiple memory banks, such that the adversary observes only which bank the CPU is communicating with, but not the address offset within each memory bank. In other words, obliviousness within each bank comes for free—either because the architecture prevents a malicious party from observing the address accessed within a bank, or because another solution is used to obfuscate memory accesses within each bank—and hence we only need to obfuscate communication patterns between the CPU and the memory banks. We present new constructions for obliviously simulating general or parallel programs in the network RAM model. We describe applications of our new model in distributed storage applications with a network adversary.
2018
CRYPTO
Searchable Encryption with Optimal Locality: Achieving Sublogarithmic Read Efficiency 📺
Ioannis Demertzis Dimitrios Papadopoulos Charalampos Papamanthou
We propose the first linear-space searchable encryption scheme with constant locality and sublogarithmic read efficiency, strictly improving the previously best known read efficiency bound (Asharov et al., STOC 2016) from $$\varTheta (\log N \log \log N)$$Θ(logNloglogN) to $$O(\log ^{\gamma } N)$$O(logγN) where $$\gamma =\frac{2}{3}+\delta $$γ=23+δ for any fixed $$\delta >0$$δ>0 and where N is the number of keyword-document pairs. Our scheme employs four different allocation algorithms for storing the keyword lists, depending on the size of the list considered each time. For our construction we develop (i) new probability bounds for the offline two-choice allocation problem; (ii) and a new I/O-efficient oblivious RAM with $$\tilde{O}(n^{1/3})$$O~(n1/3) bandwidth overhead and zero failure probability, both of which can be of independent interest.
2016
CRYPTO
2015
ASIACRYPT
2013
TCC
2013
EUROCRYPT
2011
CRYPTO

Program Committees

PKC 2020
Crypto 2019