## CryptoDB

### Peihan Miao

#### Publications

**Year**

**Venue**

**Title**

2021

PKC

Multi-Party Threshold Private Set Intersection with Sublinear Communication
📺
Abstract

In multi-party threshold private set intersection (PSI), $n$ parties each with a private set wish to compute the intersection of their sets if the intersection is sufficiently large. Previously, Ghosh and Simkin (CRYPTO 2019) studied this problem for the two-party case and demonstrated interesting lower and upper bounds on the communication complexity. In this work, we investigate the communication complexity of the multi-party setting $(n\geq 2)$. We consider two functionalities for multi-party threshold PSI. In the first, parties learn the intersection if each of their sets and the intersection differ by at most $T$. In the second functionality, parties learn the intersection if the union of all their sets and the intersection differ by at most $T$.
For both functionalities, we show that any protocol must have communication complexity $\Omega(nT)$. We build protocols with a matching upper bound of $O(nT)$ communication complexity for both functionalities assuming threshold FHE. We also construct a computationally more efficient protocol for the second functionality with communication complexity $\widetilde{O}(nT)$ under a weaker assumption of threshold additive homomorphic encryption. As a direct implication, we solve one of the open problems in the work of Ghosh and Simkin (CRYPTO 2019) by designing a two-party protocol with communication cost $\widetilde{O}(T)$ from assumptions weaker than FHE.
As a consequence of our results, we achieve the first "regular" multi-party PSI protocol where the communication complexity only grows with the size of the set difference and does not depend on the size of the input sets.

2021

TCC

Amortizing Rate-1 OT and Applications to PIR and PSI
📺
Abstract

Recent new constructions of rate-1 OT [D\"ottling, Garg, Ishai, Malavolta, Mour, and Ostrovsky, CRYPTO 2019] have brought this primitive under the spotlight and the techniques have led to new feasibility results for private-information retrieval, and homomorphic encryption for branching programs. The receiver communication of this construction consists of a quadratic (in the sender's input size) number of group elements for a single instance of rate-1 OT. Recently [Garg, Hajiabadi, Ostrovsky, TCC 2020] improved the receiver communication to a linear number of group elements for a single string-OT. However, most applications of rate-1 OT require executing it multiple times, resulting in large communication costs for the receiver.
In this work, we introduce a new technique for amortizing the cost of multiple rate-1 OTs. Specifically, based on standard pairing assumptions, we obtain a two-message rate-1 OT protocol for which the amortized cost per string-OT is asymptotically reduced to only four group elements. Our results lead to significant communication improvements in PSI and PIR, special cases of SFE for branching programs.
1. PIR: We obtain a rate-1 PIR scheme with client communication cost of $O(\lambda\cdot\log N)$ group elements for security parameter $\lambda$ and database size $N$. Notably, after a one-time setup (or one PIR instance), any following PIR instance only requires communication cost $O(\log N)$ number of group elements.
2. PSI with unbalanced inputs: We apply our techniques to private set intersection with unbalanced set sizes (where the receiver has a smaller set) and achieve receiver communication of $O((m+\lambda) \log N)$ group elements where $m, N$ are the sizes of the receiver and sender sets, respectively. Similarly, after a one-time setup (or one PSI instance), any following PSI instance only requires communication cost $O(m \cdot \log N)$ number of group elements. All previous sublinear-communication non-FHE based PSI protocols for the above unbalanced setting were also based on rate-1 OT, but incurred at least $O(\lambda^2 m \log N)$ group elements.

2020

CRYPTO

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality
📺
Abstract

Private intersection-sum with cardinality allows two parties, where each party holds a private set and one of the parties additionally holds a private integer value associated with each element in her set, to jointly compute the cardinality of the intersection of the two sets as well as the sum of the associated integer values for all the elements in the intersection, and nothing beyond that.
We present a new construction for private intersection sum with cardinality that provides malicious security with abort and guarantees that both parties receive the output upon successful completion of the protocol. A central building block for our constructions is a primitive called shuffled distributed oblivious PRF (DOPRF), which is a PRF that offers oblivious evaluation using a secret key shared between two parties, and in addition to this allows obliviously permuting the PRF outputs of several parallel oblivious evaluations. We present the first construction for shuffled DOPRF with malicious security. We further present several new sigma proof protocols for relations across Pedersen commitments, ElGamal encryptions, and Camenisch-Shoup encryptions that we use in our main construction, for which we develop new batching techniques to reduce communication.
We implement and evaluate the efficiency of our protocol and show that we can achieve communication cost that is only 4-5x greater than the most efficient semi-honest protocol. When measuring monetary cost of executing the protocol in the cloud, our protocol is 25x more expensive than the semi-honest protocol. Our construction also allows for different parameter regimes that enable trade-offs between communication and computation.

2020

CRYPTO

Private Set Intersection in the Internet Setting From Lightweight Oblivious PRF
📺
Abstract

We present a new protocol for two-party private set intersection (PSI) with semi-honest security in the plain model and one-sided malicious security in the random oracle model. Our protocol achieves a better balance between computation and communication than existing PSI protocols. Specifically, our protocol is the fastest in networks with moderate bandwidth (e.g., 30 - 100 Mbps). Considering the monetary cost (proposed by Pinkas et al. in CRYPTO 2019) to run the protocol on a cloud computing service, our protocol also compares favorably.
Underlying our PSI protocol is a new lightweight multi-point oblivious pesudorandom function (OPRF) protocol based on oblivious transfer (OT) extension. We believe this new protocol may be of independent interest.

2018

CRYPTO

Two-Round Multiparty Secure Computation Minimizing Public Key Operations
📺
Abstract

We show new constructions of semi-honest and malicious two-round multiparty secure computation protocols using only (a fixed)
$$\mathsf {poly}(n,\lambda )$$
poly(n,λ) invocations of a two-round oblivious transfer protocol (which use expensive public-key operations) and
$$\mathsf {poly}(\lambda , |C|)$$
poly(λ,|C|) cheaper one-way function calls, where
$$\lambda $$
λ is the security parameter, n is the number of parties, and C is the circuit being computed. All previously known two-round multiparty secure computation protocols required
$$\mathsf {poly}(\lambda ,|C|)$$
poly(λ,|C|) expensive public-key operations.

#### Program Committees

- Eurocrypt 2022
- Crypto 2021
- PKC 2021

#### Coauthors

- Saikrishna Badrinarayanan (1)
- Melissa Chase (2)
- Alessandro Chiesa (1)
- Chongwon Cho (1)
- Nico Döttling (1)
- Sanjam Garg (4)
- Matthew Green (1)
- Divya Gupta (2)
- Mohammad Hajiabadi (1)
- Jialin Li (1)
- Jingcheng Liu (1)
- Ian Miers (1)
- Pratyush Mishra (1)
- Omkant Pandey (1)
- Sarvar Patel (1)
- Antigoni Polychroniadou (1)
- Srinivasan Raghuraman (1)
- Mariana Raykova (1)
- Peter Rindal (1)
- Karn Seth (1)
- Akshayaram Srinivasan (1)
- Moti Yung (1)