International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Alexander R. Block

Publications

Year
Venue
Title
2020
TCC
Public-Coin Zero-Knowledge Arguments with (almost) Minimal Time and Space Overheads 📺
Zero-knowledge protocols enable the truth of a mathematical statement to be certified by a verifier without revealing any other information. Such protocols are a cornerstone of modern cryptography and recently are becoming more and more practical. However, a major bottleneck in deployment is the efficiency of the prover and, in particular, the space-efficiency of the protocol. For every $\mathsf{NP}$ relation that can be verified in time $T$ and space $S$, we construct a public-coin zero-knowledge argument in which the prover runs in time $T \cdot \mathrm{polylog}(T)$ and space $S \cdot \mathrm{polylog}(T)$. Our proofs have length $\mathrm{polylog}(T)$ and the verifier runs in time $T \cdot \mathrm{polylog}(T)$ (and space $\mathrm{polylog}(T)$). Our scheme is in the random oracle model and relies on the hardness of discrete log in prime-order groups. Our main technical contribution is a new space efficient \emph{polynomial commitment scheme} for multi-linear polynomials. Recall that in such a scheme, a sender commits to a given multi-linear polynomial $P:\mathbb{F}^n \to \mathbb{F}$ so that later on it can prove to a receiver statements of the form ``$P(x)=y$''. In our scheme, which builds on commitments schemes of Bootle et al. (Eurocrypt 2016) and B{\"u}nz et al. (S\&P 2018), we assume that the sender is given multi-pass streaming access to the evaluations of $P$ on the Boolean hypercube and we show how to implement both the sender and receiver in roughly time $2^n$ and space $n$ and with communication complexity roughly $n$.
2018
TCC
Secure Computation Using Leaky Correlations (Asymptotically Optimal Constructions)
Most secure computation protocols can be effortlessly adapted to offload a significant fraction of their computationally and cryptographically expensive components to an offline phase so that the parties can run a fast online phase and perform their intended computation securely. During this offline phase, parties generate private shares of a sample generated from a particular joint distribution, referred to as the correlation. These shares, however, are susceptible to leakage attacks by adversarial parties, which can compromise the security of the secure computation protocol. The objective, therefore, is to preserve the security of the honest party despite the leakage performed by the adversary on her share.Prior solutions, starting with n-bit leaky shares, either used 4 messages or enabled the secure computation of only sub-linear size circuits. Our work presents the first 2-message secure computation protocol for 2-party functionalities that have $$\varTheta (n)$$ circuit-size despite $$\varTheta (n)$$-bits of leakage, a qualitatively optimal result. We compose a suitable 2-message secure computation protocol in parallel with our new 2-message correlation extractor. Correlation extractors, introduced by Ishai, Kushilevitz, Ostrovsky, and Sahai (FOCS–2009) as a natural generalization of privacy amplification and randomness extraction, recover “fresh” correlations from the leaky ones, which are subsequently used by other cryptographic protocols. We construct the first 2-message correlation extractor that produces $$\varTheta (n)$$-bit fresh correlations even after $$\varTheta (n)$$-bit leakage.Our principal technical contribution, which is of potential independent interest, is the construction of a family of multiplication-friendly linear secret sharing schemes that is simultaneously a family of small-bias distributions. We construct this family by randomly “twisting then permuting” appropriate Algebraic Geometry codes over constant-size fields.
2017
CRYPTO