International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Michele Orrù

Publications

Year
Venue
Title
2021
EUROCRYPT
On the (in)security of ROS
We present an algorithm solving the ROS (Random inhomogeneities in a Overdetermined Solvable system of linear equations) problem mod p in polynomial time for $l > log p$ dimensions. Our algorithm can be combined with Wagner's attack, and leads to a sub-exponential solution for any dimension $l$ with best complexity known so far. When concurrent executions are allowed, our algorithm leads to practical attacks against unforgeability of blind signature schemes such as Schnorr and Okamoto--Schnorr blind signatures, threshold signatures such as GJKR and the original version of FROST, multisignatures such as CoSI and the two-round version of MuSig, partially blind signatures such as Abe--Okamoto, and conditional blind signatures such as ZGP17. Schemes for e-cash and anonymous credentials (such as Anonymous Credentials Light) inspired from the above are also affected.
2020
CRYPTO
Anonymous Tokens with Private Metadata Bit 📺
We present a cryptographic construction for anonymous tokens with private metadata bit, called PMBTokens. This primitive enables an issuer to provide a user with a lightweight, single-use anonymous trust token that can embed a single private bit, which is accessible only to the party who holds the secret authority key and is private with respect to anyone else. Our construction generalizes and extends the functionality of Privacy Pass (PETS’18) with this private metadata bit capability. It provides unforgeability, unlinkability, and privacy for the metadata bit properties based on the DDH and CTDH assumptions in the random oracle model. Both Privacy Pass and PMBTokens rely on non-interactive zero-knowledge proofs (NIZKs). We present new techniques to remove the need for NIZKs, while still achieving unlinkability. We implement our constructions and we report their efficiency costs.
2019
EUROCRYPT
Aggregate Cash Systems: A Cryptographic Investigation of Mimblewimble 📺
Mimblewimble is an electronic cash system proposed by an anonymous author in 2016. It combines several privacy-enhancing techniques initially envisioned for Bitcoin, such as Confidential Transactions (Maxwell, 2015), non-interactive merging of transactions (Saxena, Misra, Dhar, 2014), and cut-through of transaction inputs and outputs (Maxwell, 2013). As a remarkable consequence, coins can be deleted once they have been spent while maintaining public verifiability of the ledger, which is not possible in Bitcoin. This results in tremendous space savings for the ledger and efficiency gains for new users, who must verify their view of the system.In this paper, we provide a provable-security analysis for Mimblewimble. We give a precise syntax and formal security definitions for an abstraction of Mimblewimble that we call an aggregate cash system. We then formally prove the security of Mimblewimble in this definitional framework. Our results imply in particular that two natural instantiations (with Pedersen commitments and Schnorr or BLS signatures) are provably secure against inflation and coin theft under standard assumptions.