International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Rafail Ostrovsky

ORCID: 0000-0002-1501-1330

Publications

Year
Venue
Title
2023
CRYPTO
Tri-State Circuits: A Better Model of Computation for Garbling
David Heath Vladimir Kolesnikov Rafail Ostrovsky
We introduce tri-state circuits (TSCs). TSCs form a natural model of computation that, to our knowledge, has not been considered by theorists. The model captures a surprising combination of simplicity and power. TSCs are simple in that they allow only three wire values (0,1, and undefined -- Z) and three types of fan-in two gates; they are powerful in that their statically placed gates fire (execute) eagerly as their inputs become defined, implying orders of execution that depend on input. This behavior is sufficient to efficiently evaluate RAM programs. We construct a TSC that emulates T steps of any RAM program and that has only $O(T log^3 T log log T)$ gates. Contrast this with the reduction from RAM to Boolean circuits, where the best approach scans all of memory on each access, incurring quadratic cost. We connect TSCs with Garbled Circuits (GC). TSCs capture the power of garbling far better than Boolean Circuits, offering a more expressive model of computation that leaves per-gate cost essentially unchanged. As an important application, we construct authenticated Garbled RAM (GRAM), enabling constant-round maliciously-secure 2PC of RAM programs. Let $\lambda$ denote the security parameter. We extend authenticated garbling to TSCs; by simply plugging in our TSC-based RAM, we obtain authenticated GRAM running at cost $O(T log^3 T log log T \lambda)$, outperforming all prior work, including prior semi-honest GRAM. We also give semi-honest garbling of TSCs from a one-way function (OWF). This yields OWF-based GRAM at cost $O(T log^3 T log log T \lambda)$, outperforming the best prior OWF-based GRAM by more than factor $\lambda$.
2023
CRYPTO
List Oblivious Transfer and Applications to Round-Optimal Black-Box Multiparty Coin Tossing
In this work we study the problem of minimizing the round complexity for securely evaluating multiparty functionalities while making black-box use of polynomial time assumptions. In Eurocrypt 2016, Garg et al. showed that assuming all parties have access to a broadcast channel, then at least four rounds of communication are required to securely realize non-trivial functionalities in the plain model. A sequence of results follow-up the result of Garg et al. matching this lower bound under a variety of assumptions. Unfortunately, none of these works make black-box use of the underlying cryptographic primitives. In Crypto 2021, Ishai, Khurana, Sahai, and Srinivasan came closer to matching the four-round lower bound, obtaining a five-round protocol that makes black-box use of oblivious transfer and PKE with pseudorandom public keys. In this work, we show how to realize any input-less functionality (e.g., coin-tossing, generation of key-pairs, and so on) in four rounds while making black-box use of two-round oblivious transfer. As an additional result, we construct the first four-round MPC protocol for generic functionalities that makes black-box use of the underlying primitives, achieving security against non-aborting adversaries. Our protocols are based on a new primitive called list two-party computation. This primitive offers relaxed security compared to the standard notion of secure two-party computation. Despite this relaxation, we argue that this tool suffices for our applications. List two-party computation is of independent interest, as we argue it can also be used for the generation of setups, like oblivious transfer correlated randomness, in three rounds. Prior to our work, generating such a setup required at least four rounds of interactions or a trusted third party.
2023
CRYPTO
Succinct Arguments for RAM Programs via Projection Codes
Yuval Ishai Rafail Ostrovsky Akash Shah
Motivated by the goal of proving statements that involve small subsets of a big database, we introduce and study the notion of projection codes. A standard error-correcting code allows one to encode a message x into a codeword X, such that even if a constant fraction of X is corrupted, the message x can still be recovered. A projection code extends this guarantee to any subset of the bits of x. Concretely, for every projection of x to a subset s of its coordinates, there is a subset S of comparable size such that the projected encoding X|_S forms a robust encoding of the projected message x|_s. Our first main result is a construction of projection codes with a near-optimal increase in the length of x and size of s. We then apply this to obtain our second main result: succinct arguments for the computation of a RAM program on a (big) committed database, where the communication and the run-time of both the prover and the verifier are close to optimal even when the RAM program run-time is much smaller than the database size. Our solution makes only a black-box use of a collision-resistant hash function, providing the first black-box alternative to previous non-black-box constructions with similar asymptotic efficiency.
2023
TCC
DORAM revisited: Maliciously secure RAM-MPC with logarithmic overhead
Distributed Oblivious Random Access Memory (DORAM) is a secure multiparty protocol that allows a group of participants holding a secret-shared array to read and write to secret-shared locations within the array. The efficiency of a DORAM protocol is measured by the amount of communication and computation required per read/write query into the array. DORAM protocols are a necessary ingredient for executing Secure Multiparty Computation (MPC) in the RAM model. Although DORAM has been widely studied, all existing DORAM protocols have focused on the setting where the DORAM servers are semi-honest. Generic techniques for upgrading a semi-honest DORAM protocol to the malicious model typically increase the asymptotic communication complexity of the DORAM scheme. In this work, we present a 3-party DORAM protocol which requires $O((\kappa + D)\log N)$ communication and computation per query, for a database of size $N$ with $D$-bit values, where $\kappa$ is the security parameter. Our hidden constants in the big-O nation are small. We show that our protocol is UC-secure in the presence of a malicious, static adversary. This matches the communication and computation complexity of the best semi-honest DORAM protocols, and is the first malicious DORAM protocol with this complexity.
2023
TCC
Anonymous Permutation Routing
Paul Bunn Eyal Kushilevitz Rafail Ostrovsky
The Non-Interactive Anonymous Router (NIAR) model was introduced by Shi and Wu \cite{SW21} as an alternative to conventional solutions to the anonymous routing problem, in which a set of senders wish to send messages to a set of receivers. In contrast to most known approaches to support anonymous routing (e.g. mix-nets, DC-nets, etc.), which rely on a network of routers communicating with users via interactive protocols, the NIAR model assumes a *single* router and is inherently *non-interactive* (after an initial setup phase). In addition to being non-interactive, the NIAR model is compelling due to the security it provides: instead of relying on the honesty of some subset of the routers, the NIAR model requires anonymity even if the router (as well as an arbitrary subset of senders/receivers) is corrupted by an honest-but-curious adversary. In this paper, we present a protocol for the NIAR model that improves upon the results from \cite{SW21} in two ways: - Improved computational efficiency (quadratic to near linear): Our protocol matches the communication complexity of \cite{SW21} for each sender/receiver, while reducing the computational overhead for the router to polylog overhead instead of linear overhead. - Relaxation of assumptions: Security of the protocol in \cite{SW21} relies on the Decisional Linear assumption in bilinear groups; while security for our protocol follows from the existence of any rate-1 oblivious transfer (OT) protocol (instantiations of which are known to exist under the DDH, QR and LWE assumptions \cite{DGI19,GHO20}).
2022
EUROCRYPT
Adaptively Secure Computation for RAM Programs 📺
We obtain the first two-round two-party computation protocol, in the plain model, that is secure against passive adversaries who can adaptively corrupt all parties where the communication complexity is proportional to the square of the RAM complexity of the function up to polylogarithmic factors assuming the existence of non-committing encryption.
2022
PKC
CNF-FSS and its Applications 📺
Paul Bunn Eyal Kushilevitz Rafail Ostrovsky
Function Secret Sharing (FSS), introduced by Boyle, Gilboa and Ishai~\cite{BGI15}, extends the classical notion of secret-sharing a \textit{value} to secret sharing a \textit{function}. Namely, for a secret function $f$ (from a class $\cal F$), FSS provides a sharing of $f$ whereby {\em succinct} shares (``keys'') are distributed to a set of parties, so that later the parties can non-interactively compute an additive sharing of $f(x)$, for any input $x$ in the domain of $f$. Previous work on FSS concentrated mostly on the two-party case, where highly efficient schemes are obtained for some simple, yet extremely useful, classes $\cal F$ (in particular, FSS for the class of point functions, a task referred to as DPF~--~Distributed Point Functions~\cite{GI14,BGI15}). In this paper, we concentrate on the multi-party case, with $p\ge 3$ parties and $t$-security ($1\le t<p$). First, we introduce the notion of \textsf{CNF-DPF} (or, more generally, \textsf{CNF-FSS}), where the scheme uses the CNF version of secret sharing (rather than additive sharing) to share each value $f(x)$. We then demonstrate the utility of CNF-DPF by providing several applications. Our main result shows how CNF-DPF can be used to achieve substantial asymptotic improvement in communication complexity when using it as a building block for constructing {\em standard} $(t,p)$-DPF protocols that tolerate $t>1$ (semi-honest) corruptions (of the $p$ parties). For example, we build a 2-out-of-5 secure (standard) DPF scheme of communication complexity $O(N^{1/4})$, where $N$ is the domain size of $f$ (compared with the current best-known of $O(N^{1/2})$ for $(2,5)$-DPF). More generally, with $p>dt$ parties, we give a $(t,p)$-DPF whose communication grows as $O(N^{1/2d})$ (rather than $O(\sqrt{N})$ that follows from the $(p-1,p)$-DPF scheme of \cite{BGI15}). We also present a 1-out-of-3 secure CNF-DPF scheme, in which each party holds two of the three keys, with poly-logarithmic communication complexity. These results have immediate implications to scenarios where (multi-server) DPF was shown to be applicable. For example, we show how to use such a scheme to obtain asymptotic improvement ($O(\log^2N)$ versus $O(\sqrt{N})$) in communication complexity over the 3-party protocol of~\cite{BKKO20}.
2022
EUROCRYPT
Garbled Circuits With Sublinear Evaluator 📺
A recent line of work, Stacked Garbled Circuit (SGC), showed that Garbled Circuit (GC) can be improved for functions that include conditional behavior. SGC relieves the communication bottleneck of 2PC by only sending enough garbled material for a single branch out of the $b$ total branches. Hence, communication is sublinear in the circuit size. However, both the evaluator and the generator pay in computation and perform at least factor $\log b$ extra work as compared to standard GC evaluation. We extend the sublinearity of SGC to also include the work performed by the GC Evaluator E; thus we achieve a fully sublinear E, which is essential when optimizing for the online phase. We formalize our approach as a garbling scheme called GCWise: GC WIth Sublinear Evaluator. We show one attractive and immediate application, Garbled PIR, a primitive that marries GC with Private Information Retrieval. Garbled PIR allows the GC to non-interactively and sublinearly access a privately indexed element from a publicly known database, and then use this element in continued GC evaluation.
2022
EUROCRYPT
Round-Optimal and Communication-Efficient Multiparty Computation 📺
Typical approaches for minimizing the round complexity of multi-party computation (MPC) come at the cost of increased communication complexity (CC) or the reliance on setup assumptions. A notable exception is the recent work of Ananth et al. [TCC 2019], which used Functional Encryption (FE) combiners to obtain a round optimal (two-round) semi-honest MPC in the plain model with CC proportional to the depth and input-output length of the circuit being computed---we refer to such protocols as circuit scalable. This leaves open the question of obtaining communication efficient protocols that are secure against malicious adversaries in the plain model, which our work solves. Concretely, our two main contributions are: 1) We provide a round-preserving black-box compiler that compiles a wide class of MPC protocols into circuit-scalable maliciously secure MPC protocols in the plain model, assuming (succinct) FE combiners. 2) We provide a round-preserving black-box compiler that compiles a wide class of MPC protocols into circuit-independent --- i.e., with CC that depends only on the input-output length of the circuit---maliciously secure MPC protocols in the plain model, assuming Multi-Key Fully-Homomorphic Encryption (MFHE). Our constructions are based on a new compiler that turns a wide class of MPC protocols into k-delayed-input function MPC protocols (a notion we introduce), where the functions to be computed is specified only in the k-th round of the protocol. As immediate corollaries of our two compilers, we derive (1) the first round-optimal and circuit-scalable maliciously secure MPC, and (2) the first round-optimal and circuit-independent maliciously secure MPC in the plain model. The latter MPC achieves the best to-date CC for a round-optimal malicious MPC protocol. In fact, it is even communication-optimal when the output size of the function being evaluated is smaller than its input size (e.g., for boolean functions). All of our results are based on standard polynomial time assumptions.
2022
EUROCRYPT
EpiGRAM: Practical Garbled RAM 📺
David Heath Vladimir Kolesnikov Rafail Ostrovsky
Garbled RAM (GRAM) is a powerful technique introduced by Lu and Ostrovsky that equips Garbled Circuit (GC) with a sublinear cost RAM without adding rounds of interaction. While multiple GRAM constructions are known, none are suitable for practice, due to costs that have high constants and poor scaling. We present the first GRAM suitable for practice. For computational security parameter $\kappa$ and for a size-$n$ RAM that stores blocks of size $w = \Omega(\log^2 n)$ bits, our GRAM incurs only amortized $O(w \cdot \log^2 n \cdot \kappa)$ communication and computation per access. We evaluate the concrete cost of our GRAM; our approach outperforms trivial linear-scan-based RAM for as few as $512$ $128$-bit elements.
2022
CRYPTO
Authenticated garbling from simple correlations 📺
We revisit the problem of constant-round malicious secure two-party computation by considering the use of simple correlations, namely sources of correlated randomness that can be securely generated with sublinear communication complexity and good concrete efficiency. The current state-of-the-art protocol of Katz et al. (Crypto 2018) achieves malicious security by realizing a variant of the authenticated garbling functionality of Wang et al. (CCS 2017). Given oblivious transfer correlations, the communication cost of this protocol (with 40 bits of statistical security) is comparable to roughly 10 garbled circuits (GCs). This protocol inherently requires more than 2 rounds of interaction. In this work, we use other kinds of simple correlations to realize the authenticated garbling functionality with better efficiency. Concretely, we get the following reduced costs in the random oracle model: - Using variants of both vector oblivious linear evaluation (VOLE) and multiplication triples (MT), we reduce the cost to 1.31 GCs. - Using only variants of VOLE, we reduce the cost to 2.25 GCs. - Using only variants of MT, we obtain a non-interactive (i.e., 2-message) protocol with cost comparable to 7.47 GCs. Finally, we show that by using recent constructions of pseudorandom correlation generators (Boyle et al., CCS 2018, Crypto 2019, 2020), the simple correlations consumed by our protocols can be securely realized without forming an efficiency bottleneck.
2022
JOFC
Succinct Non-Interactive Arguments via Linear Interactive Proofs
Succinct non-interactive arguments (SNARGs) enable verifying NP statements with lower complexity than required for classical NP verification. Traditionally, the focus has been on minimizing the length of such arguments; nowadays, researchers have focused also on minimizing verification time, by drawing motivation from the problem of delegating computation. A common relaxation is a preprocessing SNARG, which allows the verifier to conduct an expensive offline phase that is independent of the statement to be proven later. Recent constructions of preprocessing SNARGs have achieved attractive features: they are publicly-verifiable, proofs consist of only O (1) encrypted (or encoded) field elements, and verification is via arithmetic circuits of size linear in the NP statement. Additionally, these constructions seem to have “escaped the hegemony” of probabilistically-checkable proofs (PCPs) as a basic building block of succinct arguments. We present a general methodology for the construction of preprocessing $$\text{ SNARG } $$ SNARG s, as well as resulting new efficiency features. Our contribution is threefold: (1) We introduce and study a natural extension of the interactive proof model that considers algebraically-bounded provers; this new setting is analogous to the common study of algebraically-bounded “adversaries” in other fields, such as pseudorandomness and randomness extraction. More concretely, in this work we focus on linear (or affine) provers, and provide several constructions of (succinct two-message) linear interactive proofs (LIPs) for NP. Our constructions are based on general transformations applied to both linear PCPs (LPCPs) and traditional “unstructured” PCPs. (2) We give conceptually simple cryptographic transformations from LIPs to preprocessing SNARGs, whose security can be based on different forms of linear targeted malleability (implied by previous knowledge assumptions). Our transformations convert arbitrary (two-message) LIPs into designated-verifier SNARGs, and LIPs with degree-bounded verifiers into publicly-verifiable SNARGs. We also extend our methodology to obtain zero-knowledge LIPs and SNARGs. Our techniques yield SNARGs of knowledge and thus can benefit from known recursive composition and bootstrapping techniques. (3) Following this methodology, we exhibit several constructions achieving new efficiency features, such as “single-ciphertext preprocessing SNARGs.” We also offer a new perspective on existing constructions of preprocessing SNARGs, revealing a direct connection of these to LPCPs and LIPs.
2021
EUROCRYPT
Alibi: A Flaw in Cuckoo-Hashing based Hierarchical ORAM Schemes and a Solution 📺
There once was a table of hashes That held extra items in stashes It all seemed like bliss But things went amiss When the stashes were stored in the caches The first Oblivious RAM protocols introduced the ``hierarchical solution,'' (STOC '90) where the server stores a series of hash tables of geometrically increasing capacities. Each ORAM query would read a small number of locations from each level of the hierarchy, and each level of the hierarchy would be reshuffled and rebuilt at geometrically increasing intervals to ensure that no single query was ever repeated twice at the same level. This yielded an ORAM protocol with polylogarithmic overhead. Future works extended and improved the hierarchical solution, replacing traditional hashing with cuckoo hashing (ICALP '11) and cuckoo hashing with a combined stash (Goodrich et al. SODA '12). In this work, we identify a subtle flaw in the protocol of Goodrich et al. (SODA '12) that uses cuckoo hashing with a stash in the hierarchical ORAM solution. We give a concrete distinguishing attack against this type of hierarchical ORAM that uses cuckoo hashing with a \emph{combined} stash. This security flaw has propagated to at least 5 subsequent hierarchical ORAM protocols, including the recent optimal ORAM scheme, OptORAMa (Eurocrypt '20). In addition to our attack, we identify a simple fix that does not increase the asymptotic complexity. We note, however, that our attack only affects more recent \emph{hierarchical ORAMs}, but does not affect the early protocols that predate the use of cuckoo hashing, or other types of ORAM solutions (e.g. Path ORAM or Circuit ORAM).
2021
EUROCRYPT
Threshold Garbled Circuits and Ad Hoc Secure Computation 📺
Michele Ciampi Vipul Goyal Rafail Ostrovsky
Garbled Circuits (GCs) represent fundamental and powerful tools in cryptography, and many variants of GCs have been considered since their introduction. An important property of the garbled circuits is that they can be evaluated securely if and only if exactly 1 key for each input wire is obtained: no less and no more. In this work we study the case when: 1) some of the wire-keys are missing, but we are still interested in computing the output of the garbled circuit and 2) the evaluator of the GC might have both keys for a constant number of wires. We start to study this question in terms of non-interactive multi-party computation (NIMPC) which is strongly connected with GCs. In this notion, there is a fixed number of parties (n) that can get correlated information from a trusted setup. Then these parties can send an encoding of their input to an evaluator, which can compute the output of the function. Similarly to the notion of ad hoc secure computation proposed by Beimel et al. [ITCS 2016], we consider the case when less than n parties participate in the online phase, and in addition we let these parties colluding with the evaluator. We refer to this notion as Threshold NIMPC. In addition, we show that when the number of parties participating in the online phase is a fixed threshold l <= n then it is possible to securely evaluate any l-input function. We build our result on top of a new secret-sharing scheme (which can be of independent interest) and on the results proposed by Benhamouda, Krawczyk and Rabin [Crypto 2017]. Our protocol can be used to compute any function in NC1 in the information-theoretic setting and any function in P assuming one-way functions. As a second (and main) contribution, we consider a slightly different notion of security in which the number of parties that can participate in the online phase is not specified, and can be any number c above the threshold l (in this case the evaluator cannot collude with the other parties). We solve an open question left open by Beimel, Ishai and Kushilevitz [Eurocrypt 2017] showing how to build a secure protocol for the case when c is constant, under the Learning with Errors assumption.
2021
CRYPTO
ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 📺
In this work, we address communication, computation, and round efficiency of unconditionally secure multi-party computation for arithmetic circuits in the honest majority setting. We achieve both algorithmic and practical improvements: - The best known result in the semi-honest setting has been due to Damgard and Nielsen (CRYPTO 2007). Over the last decade, their construction has played an important role in the progress of efficient secure computation. However despite a number of follow-up works, any significant improvements to the basic semi-honest protocol have been hard to come by. We show 33% improvement in communication complexity of this protocol. We show how to generalize this result to the malicious setting, leading to the best known unconditional honest majority MPC with malicious security. - We focus on the round complexity of the Damgard and Nielsen protocol and improve it by a factor of 2. Our improvement relies on a novel observation relating to an interplay between Damgard and Nielsen multiplication and Beaver triple multiplication. An implementation of our constructions shows an execution run time improvement compared to the state of the art ranging from 30% to 50%.
2021
ASIACRYPT
How to Build a Trapdoor Function from an Encryption Scheme 📺
In this work we ask the following question: Can we transform any encryption scheme into a trapdoor function (TDF)? Alternatively stated, can we make any encryption scheme randomness recoverable? We propose a generic compiler that takes as input any encryption scheme with pseudorandom ciphertexts and adds a trapdoor to invert the encryption, recovering also the random coins. This universal TDFier only assumes in addition the existence of a hinting pseudorandom generator (PRG). Despite the simplicity, our transformation is quite general and we establish a series of new feasibility results: - The first identity-based TDF [Bellare et al. EUROCRYPT 2012] from the CDH assumption in pairing-free groups (or from factoring), thus matching the state of the art for identity-based encryption schemes. Prior works required pairings or LWE. - The first collusion-resistant attribute-based TDF (AB-TDF) for all ($NC^1$, resp.) circuits from LWE (bilinear maps, resp.). Moreover, the first single-key AB-TDF from CDH. To the best of our knowledge, no AB-TDF was known in the literature (not even for a single key) from any assumption. We obtain the same results for predicate encryption. As an additional contribution, we define and construct a trapdoor garbling scheme: A simulation secure garbling scheme with a hidden ``trigger'' that allows the evaluator to fully recover the randomness used by the garbling algorithm. We show how to construct trapdoor garbling from the DDH or LWE assumption with an interplay of key-dependent message (KDM) and randomness-dependent message (RDM) techniques. Trapdoor garbling allows us to obtain alternative constructions of (single-key) AB-TDFs with additional desirable properties, such as adaptive security (in the choice of the attribute) and projective keys. We expect trapdoor garbling to be useful in other contexts, e.g. in case where, upon successful execution, the evaluator needs to immediately verify that the garbled circuit was well-formed.
2021
TCC
Oblivious Transfer from Trapdoor Permutations in Minimal Rounds 📺
Oblivious transfer (OT) is a foundational primitive within cryptography owing to its connection with secure computation. One of the oldest constructions of oblivious transfer was from certified trapdoor permutations (TDPs). However several decades later, we do not know if a similar construction can be obtained from TDPs in general. In this work, we study the problem of constructing round optimal oblivious transfer from trapdoor permutations. In particular, we obtain the following new results (in the plain model) relying on TDPs in a black-box manner: – Three-round oblivious transfer protocol that guarantees indistinguishability-security against malicious senders (and semi-honest receivers). – Four-round oblivious transfer protocol secure against malicious adversaries with black-box simulation-based security. By combining our second result with an already known compiler we obtain the first round-optimal 2-party computation protocol that relies in a black-box way on TDPs. A key technical tool underlying our results is a new primitive we call dual witness encryption (DWE) that may be of independent interest.
2020
TCC
Round Optimal Secure Multiparty Computation from Minimal Assumptions 📺
We construct a four round secure multiparty computation (MPC) protocol in the plain model that achieves security against any dishonest majority. The security of our protocol relies only on the existence of four round oblivious transfer. This culminates the long line of research on constructing round-efficient MPC from minimal assumptions (at least w.r.t. black-box simulation).
2020
EUROCRYPT
Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 📺
Traditional bounds on synchronous Byzantine agreement (BA) and secure multi-party computation (MPC) establish that in absence of a private correlated-randomness setup, such as a PKI, protocols can tolerate up to $t<n/3$ of the parties being malicious. The introduction of ``Nakamoto style'' consensus, based on Proof-of-Work (PoW) blockchains, put forth a somewhat different flavor of BA, showing that even a majority of corrupted parties can be tolerated as long as the majority of the computation resources remain at honest hands. This assumption on honest majority of some resource was also extended to other resources such as stake, space, etc., upon which blockchains achieving Nakamoto-style consensus were built that violated the $t<n/3$ bound in terms of number of party corruptions. The above state of affairs begs the question of whether the seeming mismatch is due to different goals and models, or whether the resource-restricting paradigm can be generically used to circumvent the $n/3$ lower bound. In this work we study this question and formally demonstrate how the above paradigm changes the rules of the game in cryptographic definitions. First, we abstract the core properties that the resource-restricting paradigm offers by means of a functionality {\em wrapper}, in the UC framework, which when applied to a standard point-to-point network restricts the ability (of the adversary) to send new messages. We show that such a wrapped network can be implemented using the resource-restricting paradigm---concretely, using PoWs and honest majority of computing power---and that the traditional $t<n/3$ impossibility results fail when the parties have access to such a network. Our construction is in the {\em fresh} Common Reference String (CRS) model---i.e., it assumes a CRS which becomes available to the parties at the same time as to the adversary. We then present constructions for BA and MPC, which given access to such a network tolerate $t<n/2$ corruptions without assuming a private correlated randomness setup. We also show how to remove the freshness assumption from the CRS by leveraging the power of a random oracle. Our MPC protocol achieves the standard notion of MPC security, where parties might have dedicated roles, as is for example the case in Oblivious Transfer protocols. This is in contrast to existing solutions basing MPC on PoWs, which associate roles to pseudonyms but do not link these pseudonyms with the actual parties.
2020
CRYPTO
On Succinct Arguments and Witness Encryption from Groups 📺
Succinct non-interactive arguments (SNARGs) enable proofs of NP statements with very low communication. Recently, there has been significant work in both theory and practice on constructing SNARGs with very short proofs. Currently, the state-of-the-art in succinctness is due to Groth (Eurocrypt 2016) who constructed a SNARG from bilinear maps where the proof consists of just 3 group elements. In this work, we first construct a concretely-efficient designated-verifier (preprocessing) SNARG with inverse polynomial soundness, where the proof consists of just 2 group elements in a standard (generic) group. This leads to a 50% reduction in concrete proof size compared to Groth's construction. We follow the approach of Bitansky et al. (TCC 2013) who describe a compiler from linear PCPs to SNARGs in the preprocessing model. Our improvement is based on a new linear PCP packing technique that allows us to construct 1-query linear PCPs which can then be compiled into a SNARG (using ElGamal encryption over a generic group). An appealing feature of our new SNARG is that the verifier can precompute a statement-independent lookup table in an offline phase; verifying proofs then only requires 2 exponentiations and a single table lookup. This makes our new designated-verifier SNARG appealing in settings that demand fast verification and minimal communication. We then turn to the question of constructing arguments where the proof consists of a single group element. Here, we first show that any (possibly interactive) argument for a language L where the verification algorithm is "generic" (i.e., only performs generic group operations) and the proof consists of a single group element, implies a witness encryption scheme for L. We then show that under a yet-unproven, but highly plausible, hypothesis on the hardness of approximating the minimal distance of linear codes, we can construct a 2-message laconic argument for NP where the proof consists of a single group element. Under the same hypothesis, we obtain a witness encryption scheme for NP in the generic group model. Along the way, we show that under a conceptually-similar but proven hardness of approximation result, there is a 2-message laconic argument for NP with negligible soundness error where the prover's message consists of just 2 group elements. In both settings, we obtain laconic arguments (and linear PCPs) with linear decision procedures. Our constructions circumvent a previous lower bound by Groth on such argument systems with linear decision procedures by relying on imperfect completeness. Namely, our constructions have vanishing but not negligible completeness error, while the lower bound of Groth implicitly assumes negligible completeness error of the underlying argument. Our techniques thus highlight new avenues for designing linear PCPs, succinct arguments, and witness encryption schemes.
2020
TCC
Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More
Sanjam Garg Mohammad Hajiabadi Rafail Ostrovsky
Substantial work on trapdoor functions (TDFs) has led to many powerful notions and applications. However, despite tremendous work and progress, all known constructions have prohibitively large public keys. In this work, we introduce new techniques for realizing so-called range-trapdoor hash functions with short public keys. This notion, introduced by Döttling et al. [Crypto 2019], allows for encoding a range of indices into a public key in a way that the public key leaks no information about the range, yet an associated trapdoor enables recovery of the corresponding input part. We give constructions of range-trapdoor hash functions, where for a given range $I$ the public key consists of $O(n)$ group elements, improving upon $O(n |I|)$ achieved by Döttling et al. Moreover, by designing our evaluation algorithm in a special way involving Toeplitz matrix multiplication and by showing how to perform fast-Fourier transforms in the exponent, we arrive at $O(n \log n)$ group operations for evaluation, improving upon $O(n^2)$, required of previous constructions. Our constructions rely on power-DDH assumptions in pairing-free groups. As applications of our results we obtain --- The first construction of (rate-1) lossy TDFs with public keys consisting of a linear number of group elements (without pairings). --- Rate-1 string OT with receiver communication complexity of $O(n)$ group elements, where $n$ is the sender's message size, improving upon $O(n^2)$ [Crypto 2019]. This leads to a similar result in the context of private-information retrieval (PIR). --- Semi-compact homomorphic encryption for branching programs: A construction of homomorphic encryption for branching programs, with ciphertexts consisting of $O(\lambda n d)$ group elements, improving upon $O(\lambda^2 n d)$. Here $\lambda $ denotes the security parameter, $n$ the input size and $d$ the depth of the program.
2020
JOFC
Oblivious Sampling with Applications to Two-Party k-Means Clustering
Paul Bunn Rafail Ostrovsky
The k -means clustering problem is one of the most explored problems in data mining. With the advent of protocols that have proven to be successful in performing single database clustering, the focus has shifted in recent years to the question of how to extend the single database protocols to a multiple database setting. To date, there have been numerous attempts to create specific multiparty k -means clustering protocols that protect the privacy of each database, but according to the standard cryptographic definitions of “privacy-protection”, so far all such attempts have fallen short of providing adequate privacy. In this paper, we describe a Two-Party k -Means Clustering Protocol that guarantees privacy against an honest-but-curious adversary, and is more efficient than utilizing a general multiparty “compiler” to achieve the same task. In particular, a main contribution of our result is a way to compute efficiently multiple iterations of k -means clustering without revealing the intermediate values. To achieve this, we describe a technique for performing two-party division securely and also introduce a novel technique allowing two parties to securely sample uniformly at random from an unknown domain size. The resulting Division Protocol and Random Value Protocol are of use to any protocol that requires the secure computation of a quotient or random sampling. Our techniques can be realized based on the existence of any semantically secure homomorphic encryption scheme. For concreteness, we describe our protocol based on Paillier Homomorphic Encryption scheme (see Paillier in Advances in: cryptology EURO-CRYPT’99 proceedings, LNCS 1592, pp 223–238, 1999). We will also demonstrate that our protocol is efficient in terms of communication, remaining competitive with existing protocols (such as Jagannathan and Wright in: KDD’05, pp 593–599, 2005) that fail to protect privacy.
2019
CRYPTO
Cryptographic Sensing 📺
Is it possible to measure a physical object in a way that makes the measurement signals unintelligible to an external observer? Alternatively, can one learn a natural concept by using a contrived training set that makes the labeled examples useless without the line of thought that has led to their choice? We initiate a study of “cryptographic sensing” problems of this type, presenting definitions, positive and negative results, and directions for further research.
2019
EUROCRYPT
Private Anonymous Data Access 📺
We consider a scenario where a server holds a huge database that it wants to make accessible to a large group of clients. After an initial setup phase, clients should be able to read arbitrary locations in the database while maintaining privacy (the server does not learn which locations are being read) and anonymity (the server does not learn which client is performing each read). This should hold even if the server colludes with a subset of the clients. Moreover, the run-time of both the server and the client during each read operation should be low, ideally only poly-logarithmic in the size of the database and the number of clients. We call this notion Private Anonymous Data Access (PANDA). PANDA simultaneously combines aspects of Private Information Retrieval (PIR) and Oblivious RAM (ORAM). PIR has no initial setup, and allows anybody to privately and anonymously access a public database, but the server’s run-time is linear in the data size. On the other hand, ORAM achieves poly-logarithmic server run-time, but requires an initial setup after which only a single client with a secret key can access the database. The goal of PANDA is to get the best of both worlds: allow many clients to privately and anonymously access the database as in PIR, while having an efficient server as in ORAM.In this work, we construct bounded-collusion PANDA schemes, where the efficiency scales linearly with a bound on the number of corrupted clients that can collude with the server, but is otherwise poly-logarithmic in the data size and the total number of clients. Our solution relies on standard assumptions, namely the existence of fully homomorphic encryption, and combines techniques from both PIR and ORAM. We also extend PANDA to settings where clients can write to the database.
2019
CRYPTO
Trapdoor Hash Functions and Their Applications 📺
We introduce a new primitive, called trapdoor hash functions (TDH), which are hash functions $$\mathsf {H}: \{0,1\}^n \rightarrow \{0,1\}^\lambda $$ with additional trapdoor function-like properties. Specifically, given an index $$i\in [n]$$, TDHs allow for sampling an encoding key $$\mathsf {ek}$$ (that hides i) along with a corresponding trapdoor. Furthermore, given $$\mathsf {H}(x)$$, a hint value $$\mathsf {E}(\mathsf {ek},x)$$, and the trapdoor corresponding to $$\mathsf {ek}$$, the $$i^{th}$$ bit of x can be efficiently recovered. In this setting, one of our main questions is: How small can the hint value $$\mathsf {E}(\mathsf {ek},x)$$ be? We obtain constructions where the hint is only one bit long based on DDH, QR, DCR, or LWE.This primitive opens a floodgate of applications for low-communication secure computation. We mainly focus on two-message protocols between a receiver and a sender, with private inputs x and y, resp., where the receiver should learn f(x, y). We wish to optimize the (download) rate of such protocols, namely the asymptotic ratio between the size of the output and the sender’s message. Using TDHs, we obtain:1.The first protocols for (two-message) rate-1 string OT based on DDH, QR, or LWE. This has several useful consequences, such as:(a)The first constructions of PIR with communication cost poly-logarithmic in the database size based on DDH or QR. These protocols are in fact rate-1 when considering block PIR.(b)The first constructions of a semi-compact homomorphic encryption scheme for branching programs, where the encrypted output grows only with the program length, based on DDH or QR.(c)The first constructions of lossy trapdoor functions with input to output ratio approaching 1 based on DDH, QR or LWE.(d)The first constant-rate LWE-based construction of a 2-message “statistically sender-private” OT protocol in the plain model.2.The first rate-1 protocols (under any assumption) for n parallel OTs and matrix-vector products from DDH, QR or LWE. We further consider the setting where f evaluates a RAM program y with running time $$T\ll |x|$$ on x. We obtain the first protocols with communication sublinear in the size of x, namely $$T\cdot \sqrt{|x|}$$ or $$T\cdot \root 3 \of {|x|}$$, based on DDH or, resp., pairings (and correlated-input secure hash functions).
2019
CRYPTO
Universally Composable Secure Computation with Corrupted Tokens 📺
We introduce the corrupted token model. This model generalizes the tamper-proof token model proposed by Katz (EUROCRYPT ’07) relaxing the trust assumption on the honest behavior of tokens. Our model is motivated by the real-world practice of outsourcing hardware production to possibly corrupted manufacturers. We capture the malicious behavior of token manufacturers by allowing the adversary to corrupt the tokens of honest players at the time of their creation.We show that under minimal complexity assumptions, i.e., the existence of one-way functions, it is possible to UC-securely realize (a variant of) the tamper-proof token functionality of Katz in the corrupted token model with n stateless tokens assuming that the adversary corrupts at most $$n-1$$ of them (for any $$n>0$$). We apply this result to existing multi-party protocols in Katz’s model to achieve UC-secure MPC in the corrupted token model assuming only the existence of one-way functions. Finally, we show how to obtain the above results using tokens of small size that take only short inputs. The technique in this result can also be used to improve the assumption of UC-secure hardware obfuscation recently proposed by Nayak et al. (NDSS ’17). While their construction requires the existence of collision-resistant hash functions, we can obtain the same result from only one-way functions. Moreover using our main result we can improve the trust assumption on the tokens as well.
2019
CRYPTO
Reusable Non-Interactive Secure Computation 📺
We consider the problem of Non-Interactive Two-Party Secure Computation (NISC), where Rachel wishes to publish an encryption of her input x, in such a way that any other party, who holds an input y, can send her a single message which conveys to her the value f(x, y), and nothing more. We demand security against malicious parties. While such protocols are easy to construct using garbled circuits and general non-interactive zero-knowledge proofs, this approach inherently makes a non-black-box use of the underlying cryptographic primitives and is infeasible in practice.Ishai et al. (Eurocrypt 2011) showed how to construct NISC protocols that only use parallel calls to an ideal oblivious transfer (OT) oracle, and additionally make only a black-box use of any pseudorandom generator. Combined with the efficient 2-message OT protocol of Peikert et al. (Crypto 2008), this leads to a practical approach to NISC that has been implemented in subsequent works. However, a major limitation of all known OT-based NISC protocols is that they are subject to selective failure attacks that allows a malicious sender to entirely compromise the security of the protocol when the receiver’s first message is reused.Motivated by the failure of the OT-based approach, we consider the problem of basing reusable NISC on parallel invocations of a standard arithmetic generalization of OT known as oblivious linear-function evaluation (OLE). We obtain the following results:We construct an information-theoretically secure reusable NISC protocol for arithmetic branching programs and general zero-knowledge functionalities in the OLE-hybrid model. Our zero-knowledge protocol only makes an absolute constant number of OLE calls per gate in an arithmetic circuit whose satisfiability is being proved. We also get reusable NISC in the OLE-hybrid model for general Boolean circuits using any one-way function.We complement this by a negative result, showing that reusable NISC is impossible to achieve in the OT-hybrid model. This provides a formal justification for the need to replace OT by OLE.We build a universally composable 2-message reusable OLE protocol in the CRS model that can be based on the security of Paillier encryption and requires only a constant number of modular exponentiations. This provides the first arithmetic analogue of the 2-message OT protocols of Peikert et al. (Crypto 2008).By combining our NISC protocol in the OLE-hybrid model and the 2-message OLE protocol, we get protocols with new attractive asymptotic and concrete efficiency features. In particular, we get the first (designated-verifier) NIZK protocols for NP where following a statement-independent preprocessing, both proving and verifying are entirely “non-cryptographic” and involve only a constant computational overhead. Furthermore, we get the first statistical designated-verifier NIZK argument for NP under an assumption related to factoring.
2019
TCC
Lower and Upper Bounds on the Randomness Complexity of Private Computations of AND
We consider multi-party information-theoretic private protocols, and specifically their randomness complexity. The randomness complexity of private protocols is of interest both because random bits are considered a scarce resource, and because of the relation between that complexity measure and other complexity measures of boolean functions such as the circuit size or the sensitivity of the function being computed [12, 17].More concretely, we consider the randomness complexity of the basic boolean function and, that serves as a building block in the design of many private protocols. We show that and cannot be privately computed using a single random bit, thus giving the first non-trivial lower bound on the 1-private randomness complexity of an explicit boolean function, $$f: \{0,1\}^n \rightarrow \{0,1\}$$. We further show that the function and, on any number of inputs n (one input bit per player), can be privately computed using 8 random bits (and 7 random bits in the special case of $$n=3$$ players), improving the upper bound of 73 random bits implicit in [17]. Together with our lower bound, we thus approach the exact determination of the randomness complexity of and. To the best of our knowledge, the exact randomness complexity of private computation is not known for any explicit function (except for xor, which is trivially 1-random, and for several degenerate functions).
2019
ASIACRYPT
UC-Secure Multiparty Computation from One-Way Functions Using Stateless Tokens
We revisit the problem of universally composable (UC) secure multiparty computation in the stateless hardware token model. We construct a three round multi-party computation protocol for general functions based on one-way functions where each party sends two tokens to every other party. Relaxing to the two-party case, we also construct a two round protocol based on one-way functions where each party sends a single token to the other party, and at the end of the protocol, both parties learn the output.One of the key components in the above constructions is a new two-round oblivious transfer protocol based on one-way functions using only one token, which can be reused an unbounded polynomial number of times. All prior constructions required either stronger complexity assumptions, or larger number of rounds, or a larger number of tokens.
2018
CRYPTO
Adaptive Garbled RAM from Laconic Oblivious Transfer
We give a construction of an adaptive garbled RAM scheme. In the adaptive setting, a client first garbles a “large” persistent database which is stored on a server. Next, the client can provide garbling of multiple adaptively and adversarially chosen RAM programs that execute and modify the stored database arbitrarily. The garbled database and the garbled program should reveal nothing more than the running time and the output of the computation. Furthermore, the sizes of the garbled database and the garbled program grow only linearly in the size of the database and the running time of the executed program respectively (up to poly logarithmic factors). The security of our construction is based on the assumption that laconic oblivious transfer (Cho et al., CRYPTO 2017) exists. Previously, such adaptive garbled RAM constructions were only known using indistinguishability obfuscation or in random oracle model. As an additional application, we note that this work yields the first constant round secure computation protocol for persistent RAM programs in the malicious setting from standard assumptions. Prior works did not support persistence in the malicious setting.
2018
CRYPTO
Continuously Non-Malleable Codes in the Split-State Model from Minimal Assumptions 📺
At ICS 2010, Dziembowski, Pietrzak and Wichs introduced the notion of non-malleable codes, a weaker form of error-correcting codes guaranteeing that the decoding of a tampered codeword either corresponds to the original message or to an unrelated value. The last few years established non-malleable codes as one of the recently invented cryptographic primitives with the highest impact and potential, with very challenging open problems and applications.In this work, we focus on so-called continuously non-malleable codes in the split-state model, as proposed by Faust et al. (TCC 2014), where a codeword is made of two shares and an adaptive adversary makes a polynomial number of attempts in order to tamper the target codeword, where each attempt is allowed to modify the two shares independently (yet arbitrarily). Achieving continuous non-malleability in the split-state model has been so far very hard. Indeed, the only known constructions require strong setup assumptions (i.e., the existence of a common reference string) and strong complexity-theoretic assumptions (i.e., the existence of non-interactive zero-knowledge proofs and collision-resistant hash functions).As our main result, we construct a continuously non-malleable code in the split-state model without setup assumptions, requiring only one-to-one one-way functions (i.e., essentially optimal computational assumptions). Our result introduces several new ideas that make progress towards understanding continuous non-malleability, and shows interesting connections with protocol-design and proof-approach techniques used in other contexts (e.g., look-ahead simulation in zero-knowledge proofs, non-malleable commitments, and leakage resilience).
2018
PKC
On the Message Complexity of Secure Multiparty Computation
Yuval Ishai Manika Mittal Rafail Ostrovsky
We study the minimal number of point-to-point messages required for general secure multiparty computation (MPC) in the setting of computational security against semi-honest, static adversaries who may corrupt an arbitrary number of parties.We show that for functionalities that take inputs from n parties and deliver outputs to k parties, $$2n+k-3$$2n+k-3 messages are necessary and sufficient. The negative result holds even when given access to an arbitrary correlated randomness setup. The positive result can be based on any 2-round MPC protocol (which can in turn can be based on 2-message oblivious transfer), or on a one-way function given a correlated randomness setup.
2018
TCC
Round Optimal Black-Box “Commit-and-Prove”
Motivated by theoretical and practical considerations, an important line of research is to design secure computation protocols that only make black-box use of cryptography. An important component in nearly all the black-box secure computation constructions is a black-box commit-and-prove protocol. A commit-and-prove protocol allows a prover to commit to a value and prove a statement about this value while guaranteeing that the committed value remains hidden. A black-box commit-and-prove protocol implements this functionality while only making black-box use of cryptography.In this paper, we build several tools that enable constructions of round-optimal, black-box commit and prove protocols. In particular, assuming injective one-way functions, we design the first round-optimal, black-box commit-and-prove arguments of knowledge satisfying strong privacy against malicious verifiers, namely:Zero-knowledge in four rounds and,Witness indistinguishability in three rounds. Prior to our work, the best known black-box protocols achieving commit-and-prove required more rounds.We additionally ensure that our protocols can be used, if needed, in the delayed-input setting, where the statement to be proven is decided only towards the end of the interaction. We also observe simple applications of our protocols towards achieving black-box four-round constructions of extractable and equivocal commitments.We believe that our protocols will provide a useful tool enabling several new constructions and easy round-efficient conversions from non-black-box to black-box protocols in the future.
2018
TCC
Information-Theoretic Broadcast with Dishonest Majority for Long Messages
Wutichai Chongchitmate Rafail Ostrovsky
Byzantine broadcast is a fundamental primitive for secure computation. In a setting with n parties in the presence of an adversary controlling at most t parties, while a lot of progress in optimizing communication complexity has been made for $$t < n/2$$t<n/2, little progress has been made for the general case $$t<n$$t<n, especially for information-theoretic security. In particular, all information-theoretic secure broadcast protocols for $$\ell $$ℓ-bit messages and $$t<n$$t<n and optimal round complexity $${\mathcal {O}}(n)$$O(n) have, so far, required a communication complexity of $${\mathcal {O}}(\ell n^2)$$O(ℓn2). A broadcast extension protocol allows a long message to be broadcast more efficiently using a small number of single-bit broadcasts. Through broadcast extension, so far, the best achievable round complexity for $$t<n$$t<n setting with the optimal communication complexity of $${\mathcal {O}}(\ell n)$$O(ℓn) is $${\mathcal {O}}(n^4)$$O(n4) rounds.In this work, we construct a new broadcast extension protocol for $$t<n$$t<n with information-theoretic security. Our protocol improves the round complexity to $${\mathcal {O}}(n^3)$$O(n3) while maintaining the optimal communication complexity for long messages. Our result shortens the gap between the information-theoretic setting and the computational setting, and between the optimal communication protocol and the optimal round protocol in the information-theoretic setting for $$t<n$$t<n.
2018
ASIACRYPT
Non-interactive Secure Computation from One-Way Functions
The notion of non-interactive secure computation (NISC) first introduced in the work of Ishai et al. [EUROCRYPT 2011] studies the following problem: Suppose a receiver R wishes to publish an encryption of her secret input y so that any sender S with input x can then send a message m that reveals f(x, y) to R (for some function f). Here, m can be viewed as an encryption of f(x, y) that can be decrypted by R. NISC requires security against both malicious senders and receivers, and also requires the receiver’s message to be reusable across multiple computations (w.r.t. a fixed input of the receiver).All previous solutions to this problem necessarily rely upon OT (or specific number-theoretic assumptions) even in the common reference string model or the random oracle model or to achieve weaker notions of security such as super-polynomial-time simulation.In this work, we construct a NISC protocol based on the minimal assumption of one way functions, in the stateless hardware token model. Our construction achieves UC security and requires a single token sent by the receiver to the sender.
2017
EUROCRYPT
2017
PKC
2017
CRYPTO
2017
CRYPTO
2017
CRYPTO
2017
TCC
2017
TCC
2017
TCC
2016
EUROCRYPT
2016
CRYPTO
2016
CRYPTO
2016
TCC
2015
JOFC
2015
TCC
2015
TCC
2015
EUROCRYPT
2015
CRYPTO
2015
CRYPTO
2015
CRYPTO
2015
CRYPTO
2014
CRYPTO
2014
CRYPTO
2014
EUROCRYPT
2014
PKC
2014
PKC
2014
TCC
2014
TCC
2014
TCC
2014
JOFC
2014
JOFC
2013
PKC
2013
TCC
2013
TCC
2013
TCC
2013
TCC
2013
CRYPTO
2013
ASIACRYPT
2013
ASIACRYPT
2013
EUROCRYPT
2013
EUROCRYPT
2012
TCC
2012
TCC
2012
TCC
2012
EUROCRYPT
2012
CRYPTO
2012
CRYPTO
2012
PKC
2012
PKC
2012
PKC
2011
CRYPTO
2011
CRYPTO
2011
EUROCRYPT
2011
ASIACRYPT
2010
TCC
2010
TCC
2010
CRYPTO
2010
CRYPTO
2010
EUROCRYPT
2009
TCC
2009
TCC
2009
CRYPTO
2008
EUROCRYPT
2008
CRYPTO
2008
CRYPTO
2008
CRYPTO
2007
ASIACRYPT
2007
CRYPTO
2007
CRYPTO
2007
PKC
2006
CRYPTO
2006
EUROCRYPT
2006
EUROCRYPT
2005
CRYPTO
2005
EUROCRYPT
2005
TCC
2005
JOFC
2004
CRYPTO
2004
EUROCRYPT
2003
EUROCRYPT
2001
CRYPTO
2001
CRYPTO
2001
EUROCRYPT
2001
EUROCRYPT
2001
EUROCRYPT
2001
JOFC
2000
EUROCRYPT
2000
EUROCRYPT
2000
JOFC
1999
CRYPTO
1999
EUROCRYPT
1998
CRYPTO
1998
JOFC
1997
CRYPTO
1997
CRYPTO
1997
CRYPTO
1993
EUROCRYPT
1992
CRYPTO
1992
CRYPTO
1991
ASIACRYPT
1989
CRYPTO
1989
CRYPTO

Program Committees

Crypto 2024
Eurocrypt 2019
Eurocrypt 2017
PKC 2016
Eurocrypt 2011
TCC 2010
Eurocrypt 2009
PKC 2007
PKC 2006
Eurocrypt 2005
TCC 2005
Crypto 2004
Crypto 2003
Crypto 2002
Crypto 1998

Coauthors

William Aiello (1)
Joël Alwen (1)
Yair Amir (2)
Prabhanjan Ananth (1)
Saikrishna Badrinarayanan (3)
Laasya Bangalore (1)
Ohad Barta (1)
Eli Ben-Sasson (1)
Nir Bitansky (2)
Dan Boneh (3)
Xavier Boyen (1)
Harry Buhrman (1)
Paul Bunn (5)
Ran Canetti (2)
Alfonso Cevallos (1)
Nishanth Chandran (6)
Melissa Chase (2)
Alessandro Chiesa (2)
Chongwon Cho (3)
Wutichai Chongchitmate (4)
Arka Rai Choudhuri (2)
Kai-Min Chung (1)
Michele Ciampi (9)
Giovanni Di Crescenzo (7)
Ivan Damgård (1)
Samuel Dittmer (1)
Yevgeniy Dodis (2)
Shlomi Dolev (1)
Nico Döttling (1)
Cynthia Dwork (1)
Brett Hemenway Falk (2)
Serge Fehr (3)
Joan Feigenbaum (1)
Matthias Fitzi (2)
Matthew K. Franklin (1)
Juan A. Garay (7)
Sanjam Garg (8)
Ran Gelles (2)
Craig Gentry (1)
Clint Givens (1)
Shafi Goldwasser (1)
S. Dov Gordon (1)
Vipul Goyal (11)
Jens Groth (4)
Mohammad Hajiabadi (2)
Shai Halevi (2)
Mike Hamburg (1)
Ariel Hamlin (1)
Abida Haque (1)
David Heath (3)
Brett Hemenway (9)
William E. Skeith III (4)
Yuval Ishai (18)
Zahra Jafargholi (1)
Abhishek Jain (7)
Ari Juels (1)
Bhavana Kanukurthi (2)
Jonathan Katz (6)
Dakshita Khurana (2)
Aggelos Kiayias (1)
Joe Kilian (1)
Vladimir Kolesnikov (3)
Daniel Kraschewski (1)
Abishek Kumarasubramanian (2)
Eyal Kushilevitz (11)
Chen-Kuei Lee (1)
Hanjun Li (1)
Benoît Libert (1)
Tianren Liu (1)
Sachin Lodha (1)
Steve Lu (8)
Michael Luby (1)
Giulio Malavolta (2)
Tal Malkin (1)
Ueli Maurer (2)
Silvio Micali (1)
Manika Mittal (1)
Tal Moran (1)
Ryan Moriarty (2)
Tamer Mour (1)
Steven Myers (1)
Moni Naor (3)
Jesper Buus Nielsen (1)
Daniel Noble (2)
Claudio Orlandi (1)
Rafail Ostrovsky (136)
Giorgos Panagiotakos (1)
Omkant Pandey (2)
Omer Paneth (2)
Anat Paskin-Cherniavsky (1)
Beni Paskin-Cherniavsky (1)
Rafael Pass (1)
Giuseppe Persiano (5)
Oxana Poburinnaya (1)
Antigoni Polychroniadou (1)
Manoj Prabhakaran (2)
Emmanuel Prouff (1)
Yuval Rabani (1)
Sivaramakrishnan Rajagopalan (1)
Vanishree Rao (2)
Mariana Raykova (1)
Silas Richelson (4)
Alon Rosen (2)
Adi Rosén (3)
Amit Sahai (11)
Alfredo De Santis (1)
Alessandra Scafuro (6)
Christian Schaffner (1)
Leonard J. Schulman (1)
Hakan Seyalioglu (1)
Hovav Shacham (1)
Akash Shah (1)
Mehul A. Shah (1)
Matan Shtepel (1)
Luisa Siniscalchi (5)
Adam Smith (3)
Yifan Song (1)
Akshayaram Srinivasan (2)
Adrian Thillard (1)
Vinod Vaikuntanathan (1)
Ramarathnam Venkatesan (3)
Muthuramakrishnan Venkitasubramaniam (3)
Daniele Venturi (1)
Damien Vergnaud (2)
Ivan Visconti (23)
Akshay Wadia (3)
Hendrik Waldner (2)
Brent Waters (1)
Mor Weiss (1)
Daniel Wichs (3)
David J. Wu (1)
Jürg Wullschleger (1)
Moti Yung (4)
Jacob Zhang (1)
Hong-Sheng Zhou (1)
Vassilis Zikas (5)