International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Ivan Visconti

Publications

Year
Venue
Title
2021
PKC
Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 📺
Publicly Verifiable Zero-Knowledge proofs are known to exist only from setup assumptions such as a trusted common reference string or a random oracle. Unfortunately, the former requires a trusted party while the latter does not exist. Blockchains are distributed systems that already exist and provide certain security properties (under some honest majority assumption), hence, a natural recent research direction has been to use a blockchain as an alternative setup assumption. In TCC 2017 Goyal and Goyal proposed a construction of a publicly verifiable zero-knowledge (pvZK) proof system for some proof-of-stake blockchains. The zero-knowledge property of their construction however relies on some additional and not fully specified assumptions about the current and future behavior of honest blockchain players. In this paper, we provide several contributions. First, we show that when using a blockchain to design a provably secure protocol, it is dangerous to rely on demanding additional requirements on behaviors of the blockchain players. We do so by showing an ``attack of the clones'' whereby a malicious verifier can use a smart contract to slyly (not through bribing) clone capabilities of honest stakeholders and use those to invalidate the zero-knowledge property of the proof system by Goyal and Goyal. Second, we propose a new publicly verifiable zero-knowledge proof system that relies on non-interactive commitments and on an assumption on the min-entropy of some blocks appearing on the blockchain. Third, motivated by the fact that blockchains are a recent innovation and their resilience, in the long run, is still controversial, we introduce the concept of collapsing blockchain, and we prove that the zero-knowledge property of our scheme holds even if the blockchain eventually becomes insecure and all blockchain players eventually become dishonest.
2020
EUROCRYPT
How to Extract Useful Randomness from Unreliable Sources 📺
For more than 30 years, cryptographers have been looking for public sources of uniform randomness in order to use them as a set-up to run appealing cryptographic protocols without relying on trusted third parties. Unfortunately, nowadays it is fair to assess that assuming the existence of physical phenomena producing public uniform randomness is far from reality.  It is known that uniform randomness cannot be extracted from a single weak source. A well-studied way to overcome this is to consider several independent weak sources. However, this means we must trust the various sampling processes of weak randomness from physical processes. Motivated by the above state of affairs, this work considers a set-up where players can access multiple {\em potential} sources of weak randomness, several of which may be jointly corrupted by a computationally unbounded adversary. We introduce {\em SHELA} (Somewhere Honest Entropic Look Ahead) sources to model this situation. We show that there is no hope of extracting uniform randomness from a {\em SHELA} source. Instead, we focus on the task of {\em Somewhere-Extraction} (i.e., outputting several candidate strings, some of which are uniformly distributed -- yet we do not know which). We give explicit constructions of {\em Somewhere-Extractors} for {\em SHELA} sources with good parameters. Then, we present applications of the above somewhere-extractor where the public uniform randomness can be replaced by the output of such extraction from corruptible sources, greatly outperforming trivial solutions. The output of somewhere-extraction is also useful in other settings, such as a suitable source of random coins for many randomized algorithms. In another front, we comprehensively study the problem of {\em Somewhere-Extraction} from a {\em weak} source, resulting in a series of bounds. Our bounds highlight the fact that, in most regimes of parameters (including those relevant for applications), {\em SHELA} sources significantly outperform {\em weak} sources of comparable parameters both when it comes to the process of {\em Somewhere-Extraction}, or in the task of amplification of success probability in randomized algorithms. Moreover, the low quality of somewhere-extraction from weak sources excludes its use in various efficient applications.
2019
PKC
Publicly Verifiable Proofs from Blockchains
A proof system is publicly verifiable, if anyone, by looking at the transcript of the proof, can be convinced that the corresponding theorem is true. Public verifiability is important in many applications since it allows to compute a proof only once while convincing an unlimited number of verifiers.Popular interactive proof systems (e.g., $$\varSigma $$-protocols) protect the witness through various properties (e.g., witness indistinguishability (WI) and zero knowledge (ZK)) but typically they are not publicly verifiable since such proofs are convincing only for those verifiers who contributed to the transcripts of the proofs. The only known proof systems that are publicly verifiable rely on a non-interactive (NI) prover, through trust assumptions (e.g., NIZK in the CRS model), heuristic assumptions (e.g., NIZK in the random oracle model), specific number-theoretic assumptions on bilinear groups or relying on obfuscation assumptions (obtaining NIWI with no setups).In this work we construct publicly verifiable witness-indistinguishable proof systems from any $$\varSigma $$-protocol, based only on the existence of a very generic blockchain. The novelty of our approach is in enforcing a non-interactive verification (thus guaranteeing public verifiability) while allowing the prover to be interactive and talk to the blockchain (this allows us to circumvent the need of strong assumptions and setups). This opens interesting directions for the design of cryptographic protocols leveraging on blockchain technology.
2019
CRYPTO
Universally Composable Secure Computation with Corrupted Tokens 📺
We introduce the corrupted token model. This model generalizes the tamper-proof token model proposed by Katz (EUROCRYPT ’07) relaxing the trust assumption on the honest behavior of tokens. Our model is motivated by the real-world practice of outsourcing hardware production to possibly corrupted manufacturers. We capture the malicious behavior of token manufacturers by allowing the adversary to corrupt the tokens of honest players at the time of their creation.We show that under minimal complexity assumptions, i.e., the existence of one-way functions, it is possible to UC-securely realize (a variant of) the tamper-proof token functionality of Katz in the corrupted token model with n stateless tokens assuming that the adversary corrupts at most $$n-1$$ of them (for any $$n>0$$). We apply this result to existing multi-party protocols in Katz’s model to achieve UC-secure MPC in the corrupted token model assuming only the existence of one-way functions. Finally, we show how to obtain the above results using tokens of small size that take only short inputs. The technique in this result can also be used to improve the assumption of UC-secure hardware obfuscation recently proposed by Nayak et al. (NDSS ’17). While their construction requires the existence of collision-resistant hash functions, we can obtain the same result from only one-way functions. Moreover using our main result we can improve the trust assumption on the tokens as well.
2019
ASIACRYPT
UC-Secure Multiparty Computation from One-Way Functions Using Stateless Tokens
We revisit the problem of universally composable (UC) secure multiparty computation in the stateless hardware token model. We construct a three round multi-party computation protocol for general functions based on one-way functions where each party sends two tokens to every other party. Relaxing to the two-party case, we also construct a two round protocol based on one-way functions where each party sends a single token to the other party, and at the end of the protocol, both parties learn the output.One of the key components in the above constructions is a new two-round oblivious transfer protocol based on one-way functions using only one token, which can be reused an unbounded polynomial number of times. All prior constructions required either stronger complexity assumptions, or larger number of rounds, or a larger number of tokens.
2018
CRYPTO
Continuously Non-Malleable Codes in the Split-State Model from Minimal Assumptions 📺
At ICS 2010, Dziembowski, Pietrzak and Wichs introduced the notion of non-malleable codes, a weaker form of error-correcting codes guaranteeing that the decoding of a tampered codeword either corresponds to the original message or to an unrelated value. The last few years established non-malleable codes as one of the recently invented cryptographic primitives with the highest impact and potential, with very challenging open problems and applications.In this work, we focus on so-called continuously non-malleable codes in the split-state model, as proposed by Faust et al. (TCC 2014), where a codeword is made of two shares and an adaptive adversary makes a polynomial number of attempts in order to tamper the target codeword, where each attempt is allowed to modify the two shares independently (yet arbitrarily). Achieving continuous non-malleability in the split-state model has been so far very hard. Indeed, the only known constructions require strong setup assumptions (i.e., the existence of a common reference string) and strong complexity-theoretic assumptions (i.e., the existence of non-interactive zero-knowledge proofs and collision-resistant hash functions).As our main result, we construct a continuously non-malleable code in the split-state model without setup assumptions, requiring only one-to-one one-way functions (i.e., essentially optimal computational assumptions). Our result introduces several new ideas that make progress towards understanding continuous non-malleability, and shows interesting connections with protocol-design and proof-approach techniques used in other contexts (e.g., look-ahead simulation in zero-knowledge proofs, non-malleable commitments, and leakage resilience).
2018
ASIACRYPT
Non-interactive Secure Computation from One-Way Functions
The notion of non-interactive secure computation (NISC) first introduced in the work of Ishai et al. [EUROCRYPT 2011] studies the following problem: Suppose a receiver R wishes to publish an encryption of her secret input y so that any sender S with input x can then send a message m that reveals f(x, y) to R (for some function f). Here, m can be viewed as an encryption of f(x, y) that can be decrypted by R. NISC requires security against both malicious senders and receivers, and also requires the receiver’s message to be reusable across multiple computations (w.r.t. a fixed input of the receiver).All previous solutions to this problem necessarily rely upon OT (or specific number-theoretic assumptions) even in the common reference string model or the random oracle model or to achieve weaker notions of security such as super-polynomial-time simulation.In this work, we construct a NISC protocol based on the minimal assumption of one way functions, in the stateless hardware token model. Our construction achieves UC security and requires a single token sent by the receiver to the sender.
2017
EUROCRYPT
2017
CRYPTO
2017
TCC
2017
TCC
2017
TCC
2016
EUROCRYPT
2016
CRYPTO
2016
TCC
2016
TCC
2015
EPRINT
2015
EPRINT
2015
EUROCRYPT
2015
CRYPTO
2014
TCC
2014
TCC
2014
EPRINT
2014
EPRINT
2013
TCC
2013
TCC
2013
ASIACRYPT
2013
EUROCRYPT
2012
TCC
2012
TCC
2012
EUROCRYPT
2012
CRYPTO
2012
CRYPTO
2010
TCC
2010
PKC
2009
TCC
2009
CRYPTO
2008
PKC
2008
EPRINT
Constant-Round Concurrent Non-Malleable Commitments and Decommitments
In this paper we consider commitment schemes that are secure against concurrent poly-time man-in-the-middle (cMiM) attacks. Under such attacks, two possible notions of security for commitment schemes have been proposed in the literature: concurrent non-malleability with respect to commitment and concurrent non-malleability with respect to decommitment (i.e., opening). After the original notion of non-malleability introduced by [Dolev, Dwork and Naor STOC 91] that is based on the independence of the committed and decommitted message, a new and stronger notion of non-malleability has been given in [Pass and Rosen STOC 05] by requiring that for any man-in-the-middle adversary there is a stand-alone adversary that succeeds with the same probability. Under this stronger security notion, a constant-round commitment scheme that is concurrent non-malleable only with respect to commitment has been given in [Pass and Rosen FOCS 05] for the plain model, thus leaving as an open problem the construction of a constant-round concurrent non-malleable commitments with respect to decommitment. In other words, in [Pass and Rosen FOCS 05] security against adversaries that mount concurrent man-in-the-middle attacks is guaranteed only during the commitment phase (under their stronger notion of non-malleability). The main result of this paper is a commitment scheme that is concurrent non-malleable with respect to both commitment and decommitment, under the stronger notion of [Pass and Rosen STOC 05]. This property protects against cMiM attacks mounted during both commitments and decommitments which is a crucial security requirement in several applications, as in some digital auctions, in which players have to perform both commitments and decommitments. Our scheme uses a constant number of rounds of interaction in the plain model and is the first scheme that enjoys all these properties under the definitions of [Pass and Rosen FOCS 05]. We stress that, exactly as in [Pass and Rosen FOCS 05], we assume that commitments and decommitments are performed in two distinct phases that do not overlap in time.
2008
CRYPTO
2006
TCC
2005
CRYPTO
2004
ASIACRYPT
2004
CRYPTO

Program Committees

TCC 2018
Eurocrypt 2018
Asiacrypt 2017
PKC 2017
Asiacrypt 2016
Eurocrypt 2016
TCC 2016
Crypto 2014
Eurocrypt 2014
Eurocrypt 2012
PKC 2012
PKC 2010
PKC 2009
Asiacrypt 2009