International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Steve Lu

Publications

Year
Venue
Title
2017
CRYPTO
2015
EPRINT
2015
EPRINT
2014
EUROCRYPT
2014
EPRINT
2013
TCC
2013
EUROCRYPT
2012
PKC
2010
EPRINT
Correlated Product Security From Any One-Way Function and the New Notion of Decisional Correlated Product Security
It is well-known that the k-wise product of one-way functions remains one-way, but may no longer be when the k inputs are correlated. At TCC 2009, Rosen and Segev introduced a new notion known as Correlated Product secure functions. These functions have the property that a k-wise product of them remains one-way even under correlated inputs. Rosen and Segev gave a construction of injective trapdoor functions which were correlated product secure from the existence of Lossy Trapdoor Functions (introduced by Peikert and Waters in STOC 2008). The first main result of this work shows the surprising fact that a family of correlated product secure functions can be constructed from any one-way function. Because correlated product secure functions are trivially one-way, this shows an equivalence between the existence of these two cryptographic primitives. In the second main result of this work, we consider a natural decisional variant of correlated product security. Roughly, a family of functions are Decisional Correlated Product (DCP) secure if $f_1(x_1),\ldots,f_k(x_1)$ is indistinguishable from $f_1(x_1),\ldots,f_k(x_k)$ when $x_1,\ldots,x_k$ are chosen uniformly at random. We argue that the notion of Decisional Correlated Product security is a very natural one. To this end, we show a parallel from the Discrete Log Problem and Decision Diffie-Hellman Problem to Correlated Product security and its decisional variant. This intuition gives very simple constructions of PRGs and IND-CPA encryption from DCP secure functions. Furthermore, we strengthen our first result by showing that the existence of DCP secure one-way functions is also equivalent to the existence of any one-way function. When considering DCP secure functions with trapdoors, we give a construction based on Lossy Trapdoor Functions, and show that any DCP secure function family with trapdoor satisfy the security requirements for Deterministic Encryption as defined by Bellare, Boldyreva and O'Neill in CRYPTO 2007. In fact, we also show that definitionally, DCP secure functions with trapdoors are a strict subset of Deterministic Encryption functions by showing an example of a Deterministic Encryption function which according to the definition is not a DCP secure function.
2007
ASIACRYPT
2007
PKC
2006
EUROCRYPT
2006
EPRINT
Sequential Aggregate Signatures and Multisignatures without Random Oracles
We present the first aggregate signature, the first multisignature, and the first verifiably encrypted signature provably secure without random oracles. Our constructions derive from a novel application of a recent signature scheme due to Waters. Signatures in our aggregate signature scheme are sequentially constructed, but knowledge of the order in which messages were signed is not necessary for verification. The aggregate signatures obtained are shorter than Lysyanskaya et~al. sequential aggregates and can be verified more efficiently than Boneh et~al. aggregates. We also consider applications to secure routing and proxy signatures.