## CryptoDB

### Hendrik Waldner

#### ORCID: 0000-0002-9083-5794

#### Publications

**Year**

**Venue**

**Title**

2024

PKC

Updatable Policy-Compliant Signatures
Abstract

Policy-compliant signatures (PCS) are a recently introduced primitive by Badertscher et al. [TCC 2021] in which a central authority distributes secret and public keys associated with sets of attributes (e.g., nationality, affiliation with a specific department, or age) to its users. The authority also enforces a policy determining which senders can sign messages for which receivers based on a joint check of their attributes. For example, senders and receivers must have the same nationality, or only senders that are at least 18 years old can send to members of the computer science department. PCS further requires attribute-privacy -- nothing about the users' attributes is revealed from their public keys and signatures apart from whether the attributes satisfy the policy or not. The policy in a PCS scheme is fixed once and for all during the setup. Therefore, a policy update requires a redistribution of all keys. This severely limits the practicality of PCS. In this work, we introduce the notion of updatable policy-compliant signatures (UPCS) extending PCS with a mechanism to efficiently update the policy without redistributing keys to all participants.
We define the notion of UPCS and provide the corresponding security definitions. We then provide a generic construction of UPCS based on digital signatures, a NIZK proof system, and a so-called secret-key two-input partially-hiding predicate encryption (2-PHPE) scheme. Unfortunately, the only known way to build the latter for general two-input predicates is using indistinguishability obfuscation. We show that the reliance on the heavy tool of 2-PHPE is inherent to build UPCS by proving that non-interactive UPCS implies 2-PHPE.
To circumvent the reliance on 2-PHPE, we consider interactive UPCS, which allows sender and receiver to interact during the message signing. In this setting, we present two UPCS schemes: the first one requires only a digital signature scheme, a NIZK proof system, and secure two-party computation. This scheme works for arbitrary policies, but requires senders and receivers to engage in the two-party computation for each policy update. Our second scheme additionally requires a (single-input) predicate-encryption scheme and only requires the sender and receiver to interact ones independent of the updates. In contrast to 2-PHPE, single-input predicate encryption supporting certain predicate classes are known to exist (e.g., from pairings) under more concrete and well-understood assumptions.

2024

CRYPTO

Field-Agnostic SNARKs from Expand-Accumulate Codes
Abstract

Efficient realizations of succinct non-interactive arguments of knowledge (SNARK) have gained popularity due to their practical applications in various domains. Among existing schemes, those based on error-correcting codes are of particular interest because of their good concrete efficiency, transparent setup, and plausible post-quantum security. However, many existing code-based SNARKs suffer from the disadvantage that they only work over specific finite fields.
In this work, we construct a code-based SNARK that does not rely on any specific underlying field; i.e., it is \emph{field-agnostic}. Our construction follows the framework of Brakedown and builds a polynomial commitment scheme (and hence a SNARK) based on recently introduced \emph{expand-accumulate codes}. Our work generalizes these codes to arbitrary finite fields; our main technical contribution is showing that, with high probability, these codes have constant rate and constant relative distance (crucial properties for building efficient SNARKs), solving an open problem from prior work.
As a result of our work we obtain a SNARK where,
for a statement of size $M$, the prover time is $O(M\log M)$ and the proof size is $O(\sqrt{M})$. We demonstrate the concrete efficiency of our scheme empirically via experiments. Proving ECDSA verification on the secp256k1 curve requires only 0.23s for proof generation, 2~orders of magnitude faster than SNARKs that are not field-agnostic. Compared to the original Brakedown result (which is also field-agnostic), we obtain proofs that are 1.9--2.8$\times$ smaller due to the good concrete distance of our underlying error-correcting code, while introducing only a small overhead of 1.2$\times$ in the prover time.

2023

CRYPTO

List Oblivious Transfer and Applications to Round-Optimal Black-Box Multiparty Coin Tossing
Abstract

In this work we study the problem of minimizing the round complexity for securely evaluating multiparty functionalities while making black-box use of polynomial time assumptions. In Eurocrypt 2016, Garg et al. showed that assuming all parties have access to a broadcast channel, then at least four rounds of communication are required to securely realize non-trivial functionalities in the plain model.
A sequence of results follow-up the result of Garg et al. matching this lower bound under a variety of assumptions. Unfortunately, none of these works make black-box use of the underlying cryptographic primitives. In Crypto 2021, Ishai, Khurana, Sahai, and Srinivasan came closer to matching the four-round lower bound, obtaining a five-round protocol that makes black-box use of oblivious transfer and PKE with pseudorandom public keys.
In this work, we show how to realize any input-less functionality (e.g., coin-tossing, generation of key-pairs, and so on) in four rounds while making black-box use of two-round oblivious transfer. As an additional result, we construct the first four-round MPC protocol for generic functionalities that makes black-box use of the underlying primitives, achieving security against non-aborting adversaries.
Our protocols are based on a new primitive called list two-party computation. This primitive offers relaxed security compared to the standard notion of secure two-party computation. Despite this relaxation, we argue that this tool suffices for our applications. List two-party computation is of independent interest, as we argue it can also be used for the generation of setups, like oblivious transfer correlated randomness, in three rounds. Prior to our work, generating such a setup required at least four rounds of interactions or a trusted third party.

2022

EUROCRYPT

Round-Optimal and Communication-Efficient Multiparty Computation
📺
Abstract

Typical approaches for minimizing the round complexity of multi-party computation (MPC) come at the cost of increased communication complexity (CC) or the reliance on setup assumptions. A notable exception is the recent work of Ananth et al. [TCC 2019], which used Functional Encryption (FE) combiners to obtain a round optimal (two-round) semi-honest MPC in the plain model with CC proportional to the depth and input-output length of the circuit being computed---we refer to such protocols as circuit scalable. This leaves open the question of obtaining communication efficient protocols that are secure against malicious adversaries in the plain model, which our work solves. Concretely, our two main contributions are:
1) We provide a round-preserving black-box compiler that compiles a wide class of MPC protocols into circuit-scalable maliciously secure MPC protocols in the plain model, assuming (succinct) FE combiners.
2) We provide a round-preserving black-box compiler that compiles a wide class of MPC protocols into circuit-independent --- i.e., with CC that depends only on the input-output length of the circuit---maliciously secure MPC protocols in the plain model, assuming Multi-Key Fully-Homomorphic Encryption (MFHE).
Our constructions are based on a new compiler that turns a wide class of MPC protocols into k-delayed-input function MPC protocols (a notion we introduce), where the functions to be computed is specified only in the k-th round of the protocol.
As immediate corollaries of our two compilers, we derive (1) the first round-optimal and circuit-scalable maliciously secure MPC, and (2) the first round-optimal and circuit-independent maliciously secure MPC in the plain model. The latter MPC achieves the best to-date CC for a round-optimal malicious MPC protocol. In fact, it is even communication-optimal when the output size of the function being evaluated is smaller than its input size (e.g., for boolean functions). All of our results are based on standard polynomial time assumptions.

2022

EUROCRYPT

Round-Optimal Multi-Party Computation with Identifiable Abort
📺
Abstract

Secure multi-party computation (MPC) protocols that are resilient to a dishonest majority allow the adversary to get the output of the computation while, at the same time, forcing the honest parties to abort. Aumann and Lindell introduced the enhanced notion of security with identifiable abort, which still allows the adversary to trigger an abort but, at the same time, it enables the honest parties to agree on the identity of the party that led to the abort. More recently, in Eurocrypt 2016, Garg et al. showed that, assuming access to a simultaneous message exchange channel for all the parties, at least four rounds of communication are required to securely realize non-trivial functionalities in the plain model.
Following Garg et al., a sequence of works has matched this lower bound, but none of them achieved security with identifiable abort. In this work, we close this gap and show that four rounds of communication are also sufficient to securely realize any functionality with identifiable abort using standard and generic polynomial-time assumptions. To achieve this result we introduce the new notion of bounded-rewind secure MPC that guarantees security even against an adversary that performs a mild form of reset attacks. We show how to instantiate this primitive starting from any MPC protocol and by assuming trapdoor-permutations.
The notion of bounded-rewind secure MPC allows for easier parallel composition of MPC protocols with other (interactive) cryptographic primitives. Therefore, we believe that this primitive can be useful in other contexts in which it is crucial to combine multiple primitives with MPC protocols while keeping the round complexity of the final protocol low.

2021

PKC

Multi-Client Functional Encryption for Separable Functions
📺
Abstract

In this work, we provide a compiler that transforms a single-input functional encryption scheme for the class of polynomially bounded circuits
into a multi-client functional encryption (MCFE) scheme for the class of separable functions. An $n$-input function $f$ is called separable if it can be described as a list of polynomially bounded circuits $f^1,..., f^n$ s.t. $f(x_1,..., x_n)= f^1(x_1)+ ... + f^n(x_n)$ for all $x_1,..., x_n$.
Our compiler extends the works of Brakerski et al. [Eurocrypt 2016] and of Komargodski et al. [Eurocrypt 2017] in which a generic compiler is proposed to obtain multi-input functional encryption (MIFE) from single-input functional encryption. Our construction achieves the stronger notion of MCFE but for the less generic class of separable functions. Prior to our work, a long line of results has been proposed in the setting of MCFE for the inner-product functionality, which is a special case of a separable function.
We also propose a modified version of the notion of decentralized MCFE introduced by Chotard et al. [Asiacrypt 2018] that we call outsourceable mulit-client functional encryption (OMCFE). Intuitively, the notion of OMCFE makes it possible to distribute the load of the decryption procedure among at most $n$ different entities, which will return decryption shares that can be combined (e.g., additively) thus obtaining the output of the computation. This notion is especially useful in the case of a very resource consuming decryption procedure, while the combine algorithm is non-time consuming. We also show how to extend the presented MCFE protocol to obtain an OMCFE scheme for the same functionality class.

2021

TCC

Policy-Compliant Signatures
📺
Abstract

We introduce policy-compliant signatures (PCS). A PCS scheme can be used in a setting where a central authority determines a global policy and distributes public and secret keys associated with sets of attributes to the users in the system. If two users, Alice and Bob, have attribute sets that jointly satisfy the global policy, Alice can use her secret key and Bob's public key to sign a message. Unforgeability ensures that a valid signature can only be produced if Alice's secret key is known and if the policy is satisfied. Privacy guarantees that the public keys and produced signatures reveal nothing about the users' attributes beyond whether they satisfy the policy or not. PCS extends the functionality provided by existing primitives such as attribute-based signatures and policy-based signatures, which do not consider a designated receiver and thus cannot include the receiver's attributes in the policies. We describe practical applications of PCS which include controlling transactions in financial systems with strong privacy guarantees (avoiding additional trusted entities that check compliance), as well as being a tool for trust negotiations.
We introduce an indistinguishability-based privacy notion for PCS and present a generic and modular scheme based on standard building blocks such as signatures, non-interactive zero-knowledge proofs, and a (predicate-only) predicate encryption scheme. We show that it can be instantiated to obtain an efficient scheme that is provably secure under standard pairing-assumptions for a wide range of policies.
We further model PCS in UC by describing the goal of PCS as an enhanced ideal signature functionality which gives rise to a simulation-based privacy notion for PCS. We show that our generic scheme achieves this composable security notion under the additional assumption that the underlying predicate encryption scheme satisfies a stronger, fully adaptive, simulation-based attribute-hiding notion.

2019

PKC

Decentralizing Inner-Product Functional Encryption
Abstract

Multi-client functional encryption (MCFE) is a more flexible variant of functional encryption whose functional decryption involves multiple ciphertexts from different parties. Each party holds a different secret key and can independently and adaptively be corrupted by the adversary. We present two compilers for MCFE schemes for the inner-product functionality, both of which support encryption labels. Our first compiler transforms any scheme with a special key-derivation property into a decentralized scheme, as defined by Chotard et al. (ASIACRYPT 2018), thus allowing for a simple distributed way of generating functional decryption keys without a trusted party. Our second compiler allows to lift an unnatural restriction present in existing (decentralized) MCFE schemes, which requires the adversary to ask for a ciphertext from each party. We apply our compilers to the works of Abdalla et al. (CRYPTO 2018) and Chotard et al. (ASIACRYPT 2018) to obtain schemes with hitherto unachieved properties. From Abdalla et al., we obtain instantiations of DMCFE schemes in the standard model (from DDH, Paillier, or LWE) but without labels. From Chotard et al., we obtain a DMCFE scheme with labels still in the random oracle model, but without pairings.

#### Coauthors

- Michel Abdalla (1)
- Christian Badertscher (2)
- Fabrice Benhamouda (1)
- Alexander R. Block (1)
- Michele Ciampi (4)
- Zhiyong Fang (1)
- Jonathan Katz (1)
- Markulf Kohlweiss (1)
- Monosij Maitra (1)
- Christian Matt (2)
- Rafail Ostrovsky (2)
- Divya Ravi (1)
- Luisa Siniscalchi (3)
- Justin Thaler (1)
- Yupeng Zhang (1)
- Vassilis Zikas (1)