## CryptoDB

### Papers from PKC 2022

**Year**

**Venue**

**Title**

2022

PKC

A New Security Notion for PKC in the Standard Model: Weaker, Simpler, and Still Realizing Secure Channels
📺 Abstract

Encryption satisfying CCA2 security is commonly known to be unnecessarily strong for realizing secure channels. Moreover, CCA2 constructions in the standard model are far from being competitive practical alternatives to constructions via random oracle. A promising research area to alleviate this problem are weaker security notions—like IND-RCCA secure encryption or IND-atag-wCCA secure tag-based encryption—which are still able to facilitate secure message transfer (SMT) via authenticated channels.
In this paper we introduce the concept of sender-binding encryption (SBE), unifying prior approaches of SMT construction in the universal composability (UC) model. We furthermore develop the corresponding non-trivial security notion of IND-SB-CPA and formally prove that it suffices for realizing SMT in conjunction with authenticated channels. Our notion is the weakest so far in the sense that it can be generically constructed from the weakest prior notions—RCCA and atag-wCCA—without additional assumptions, while the reverse is not true. A direct consequence is that IND-stag-wCCA, which is strictly weaker than IND-atag-wCCA but stronger than our IND-SB-CPA, can be used to construct a secure channel.
Finally, we give an efficient IND-SB-CPA secure construction in the standard model from IND-CPA secure double receiver encryption (DRE) based on McEliece. This shows that IND-SB-CPA security yields simpler and more efficient constructions in the standard model than the weakest prior notions, i.e., IND-atag-wCCA and IND-stag-wCCA.

2022

PKC

A Note on the Post-Quantum Security of (Ring) Signatures
📺 Abstract

This work revisits the security of classical signatures and ring signatures in a quantum world. For (ordinary) signatures, we focus on the arguably preferable security notion of {\em blind-unforgeability} recently proposed by Alagic et al.\ (Eurocrypt'20). We present two {\em short} signature schemes achieving this notion: one is in the quantum random oracle model, assuming quantum hardness of SIS; and the other is in the plain model, assuming quantum hardness of LWE with super-polynomial modulus. Prior to this work, the only known blind-unforgeable schemes are Lamport's one-time signature and the Winternitz one-time signature, and both of them are in the quantum random oracle model.
For ring signatures, the recent work by Chatterjee et al.\ (Crypto'21) proposes a definition trying to capture adversaries with quantum access to the signer. However, it is unclear if their definition, when restricted to the classical world, is as strong as the standard security notion for ring signatures. They also present a construction that only {\em partially} achieves (even) this seeming weak definition, in the sense that the adversary can only conduct superposition attacks over the messages, but not the rings. We propose a new definition that does not suffer from the above issue. Our definition is an analog to the blind-unforgeability in the ring signature setting. Moreover, assuming the quantum hardness of LWE, we construct a compiler converting any blind-unforgeable (ordinary) signatures to a ring signature satisfying our definition.

2022

PKC

A Unified Framework for Non-Universal SNARKs
Abstract

We propose a general framework for non-universal SNARKs. It contains (1) knowledge-sound and non-black-box any-simulation-extractable (ASE), (2) zero-knowledge and subversion-zero knowledge SNARKs for the well-known QAP, SAP, QSP, and QSP constraint languages that all by design have \emph{relatively} simple security proofs. The knowledge-sound zero-knowledge SNARK is similar to Groth's SNARK from EUROCRYPT 2016, except having fewer trapdoors, while the ASE subversion-zero knowledge SNARK relies on few additional conditions. We prove security in a weaker, more realistic version of the algebraic group model. We characterize SAP, SSP, and QSP in terms of QAP; this allows one to use a SNARK for QAP directly for other languages. Our results allow us to construct a family of SNARKs for different languages and with different security properties following the same proof template. Some of the new SNARKs are more efficient than prior ones. In other cases, the new SNARKs cover gaps in the landscape, e.g., there was no previous ASE or Sub-ZK SNARK for SSP or QSP.

2022

PKC

CNF-FSS and its Applications
📺 Abstract

Function Secret Sharing (FSS), introduced by Boyle, Gilboa and Ishai~\cite{BGI15}, extends the classical notion of secret-sharing a \textit{value} to secret sharing a \textit{function}. Namely, for a secret function $f$ (from a class $\cal F$), FSS provides a sharing of $f$ whereby {\em succinct} shares (``keys'') are distributed to a set of parties, so that later the parties can non-interactively compute an additive sharing of $f(x)$, for any input $x$ in the domain of $f$.
Previous work on FSS concentrated mostly on the two-party case, where highly efficient schemes are obtained for some simple, yet extremely useful, classes $\cal F$ (in particular, FSS for the class of point functions, a task referred to as DPF~--~Distributed Point Functions~\cite{GI14,BGI15}).
In this paper, we concentrate on the multi-party case, with $p\ge 3$ parties and $t$-security ($1\le t<p$). First, we introduce the notion of \textsf{CNF-DPF} (or, more generally, \textsf{CNF-FSS}), where the scheme uses the CNF version of secret sharing (rather than additive sharing) to share each value $f(x)$. We then demonstrate the utility of CNF-DPF by providing several applications. Our main result shows how CNF-DPF can be used to achieve substantial asymptotic improvement in communication complexity when using it as a building block for constructing {\em standard} $(t,p)$-DPF protocols that tolerate $t>1$ (semi-honest) corruptions (of the $p$ parties). For example, we build a 2-out-of-5 secure (standard) DPF scheme of communication complexity $O(N^{1/4})$, where $N$ is the domain size of $f$ (compared with the current best-known of $O(N^{1/2})$ for $(2,5)$-DPF). More generally, with $p>dt$ parties, we give a $(t,p)$-DPF whose communication grows as $O(N^{1/2d})$ (rather than $O(\sqrt{N})$ that follows from the $(p-1,p)$-DPF scheme of \cite{BGI15}).
We also present a 1-out-of-3 secure CNF-DPF scheme, in which each party holds two of the three keys, with poly-logarithmic communication complexity. These results have immediate implications to scenarios where (multi-server) DPF was shown to be applicable. For example, we show how to use such a scheme to obtain asymptotic improvement ($O(\log^2N)$ versus $O(\sqrt{N})$) in communication complexity over the 3-party protocol of~\cite{BKKO20}.

2022

PKC

Count Me In! Extendablity for Threshold Ring Signatures
📺 Abstract

Ring signatures enable a signer to sign a message on behalf of a group anonymously, without revealing her identity. Similarly, threshold ring signatures allow several signers to sign the same message
on behalf of a group; while the combined signature reveals that some threshold t of group members signed the message, it does not leak anything else about the signers’ identities. Anonymity is a central feature
in threshold ring signature applications, such as whistleblowing, e-voting and privacy-preserving cryptocurrencies: it is often crucial for signers to remain anonymous even from their fellow signers. When the generation of a signature requires interaction, this is diffcult to achieve. There exist
threshold ring signatures with non-interactive signing — where signers locally produce partial signatures which can then be aggregated — but a limitation of existing threshold ring signature constructions is that all of the signers must agree on the group on whose behalf they are signing, which implicitly assumes some coordination amongst them. The need to agree on a group before generating a signature also prevents others — from outside that group — from endorsing a message by adding their signature to the statement post-factum. We overcome this limitation by introducing extendability for ring signatures, same-message linkable ring signatures, and threshold ring signatures. Extendability allows an untrusted third party to take a signature, and extend it by enlarging the anonymity set to a larger set. In the extendable threshold ring signature, two signatures on the same message which have been extended to the same anonymity set can then be combined into one signature with a higher threshold. This enhances signers’ anonymity, and enables new signers to anonymously support a statement already made by others.
For each of those primitives, we formalize the syntax and provide a meaningful security model which includes different flavors of anonymous extendability. In addition, we present concrete realizations of each primitive and formally prove their security relying on signatures of knowledge and the hardness of the discrete logarithm problem. We also describe a generic transformation to obtain extendable threshold ring signatures from same-message-linkable extendable ring signatures. Finally, we implement and benchmark our constructions.

2022

PKC

ECLIPSE: Enhanced Compiling method for Pedersen-committed zkSNARK Engines
📺 Abstract

We advance the state-of-the art for zero-knowledge commit-and-prove SNARKs (CP-SNARKs).
CP-SNARKs are an important class of SNARKs which, using commitments as ``glue'', allow to efficiently combine proof systems---e.g., general-purpose SNARKs (an efficient way to prove statements about circuits) and $\Sigma$-protocols (an efficient way to prove statements about group operations).
Thus, CP-SNARKs allow to efficiently provide zero-knowledge proofs for composite statements such as $h=H(g^{x})$ for some hash-function $H$.
Our main contribution is providing the first construction of CP-SNARKs where the proof size is succinct in the number of commitments.
We achieve our result by providing a general technique to compile Algebraic Holographic Proofs (AHP) (an underlying abstraction used in many modern SNARKs) with special ``decomposition'' properties into an efficient CP-SNARK. We then show that some of the most efficient AHP constructions---Marlin, PLONK, and Sonic---satisfy our compilation requirements.
Our resulting SNARKs achieve universal and updatable reference strings, which are highly desirable features as they greatly reduce the trust needed in the SNARK setup phase.

2022

PKC

Efficient Lattice-Based Blind Signatures via Gaussian One-Time Signatures
📺 Abstract

Lattice-based blind signature schemes have been receiving some recent attention lately. Earlier efficient 3-round schemes (Asiacrypt 2010, Financial Cryptography 2020) were recently shown to have mistakes in their proofs, and fixing them turned out to be extremely inefficient and limited the number of signatures that a signer could send to less than a dozen (Crypto 2020). In this work we propose a round-optimal, 2-round lattice-based blind signature scheme which produces signatures of length 150KB. The running time of the signing protocol is linear in the maximum number signatures that can be given out, and this limits the number of signatures that can be signed per public key. Nevertheless, the scheme is still quite efficient when the number of signatures is limited to a few dozen thousand, and appears to currently be the most efficient lattice-based candidate.

2022

PKC

Efficient Lattice-Based Inner-Product Functional Encryption
📺 Abstract

In the recent years, many research lines on Functional Encryption (FE) have been suggested and studied regarding the functionality, security, or efficiency. Nevertheless, an open problem on a basic functionality, the single-input inner-product (IPFE), remains: can IPFE be instantiated based on the Ring Learning With Errors (RLWE) assumption?
The RLWE assumption provides quantum-resistance security while in comparison with LWE assumption gives significant performance and compactness gains. In this paper we present the first RLWE-based IPFE scheme. We carefully choose strategies in the security proofs to optimize the size of parameters. More precisely, we develop two new results on ideal lattices. The first result is a variant of Ring-LWE, that we call multi-hint extended Ring-LWE, where some hints on the secret and the noise are given. We present a reduction from RLWE problem to this variant. The second tool is a special form of Leftover Hash Lemma (LHL) over rings, known as Ring-LHL.
To demonstrate the efficiency of our scheme we provide an optimized implementation of RLWE-based IPFE scheme and show its performance on a practical use case.
We further present new compilers that, combined with some existing ones, can transfer a single-input FE to its (identity-based, decentralized) multi-client variant with linear size of the ciphertext (w.r.t the number of clients).

2022

PKC

Efficient Verifiable Partially-Decryptable Commitments from Lattices and Applications
📺 Abstract

We introduce verifiable partially-decryptable commitments (VPDC), as a building block for constructing efficient privacy-preserving protocols supporting auditability by a trusted party. A VPDC is an extension of a commitment along with an accompanying proof, convincing a verifier that (i) the given commitment is well-formed and (ii) a certain part of the committed message can be decrypted using a (secret) trapdoor known to a trusted party.
We first formalize VPDCs and then introduce a general decryption feasibility result that overcomes the challenges in relaxed proofs arising in the lattice setting. Our general result can be applied to a wide class of Fiat-Shamir based protocols and may be of independent interest.
Next, we show how to extend the commonly used lattice-based `Hashed-Message Commitment' (HMC) scheme into a succinct and efficient VPDC. In particular, we devise a novel `gadget'-based Regev-style (partial) decryption method, compatible with efficient relaxed lattice-based zero-knowledge proofs. We prove the soundness of our VPDC in the setting of adversarial proofs, where a prover tries to create a valid VPDC output that fails in decryption.
To demonstrate the effectiveness of our results, we extend a private blockchain payment protocol, MatRiCT, by Esgin et al. (ACM CCS '19) into a formally auditable construction, which we call MatRiCT-Au, with very low communication and computation overheads over MatRiCT.

2022

PKC

Encapsulated Search Index : Public-Key, Sub-linear, Distributed, and Delegatable
📺 Abstract

We build the first *sub-linear* (in fact, potentially constant-time) *public-key* searchable encryption system:
- server can publish a public key $PK$.
- anybody can build an encrypted index for document $D$ under $PK$.
- client holding the index can obtain a
token $z_w$ from the server to check if a keyword $w$ belongs to $D$.
- search using $z_w$ is almost as fast (e.g., sub-linear) as the non-private search.
- server granting the token does not learn anything about the document $D$, beyond the keyword $w$.
- yet, the token $z_w$ is specific to the pair $(D,w)$: the client does not learn if other keywords $w'\neq w$ belong to $D$, or if $w$ belongs to other, freshly indexed documents $D'$.
- server cannot fool the client by giving a wrong token $z_w$.
We call such a primitive *encapsulated search index* (ESI). Our ESI scheme can be made $(t,n)$-distributed among $n$ servers in the best possible way: *non-interactive*, verifiable, and resilient to any coalition of up to $(t-1)$ malicious servers. We also introduce the notion of *delegatable* ESI and show how to extend our construction to this setting.
Our solution --- including public indexing, sub-linear search, delegation, and distributed token generation --- is deployed as a commercial application by a real-world company.

2022

PKC

Financially Backed Covert Security
📺 Abstract

The security notion of covert security introduced by Aumann and Lindell (TCC'07) allows the adversary to successfully cheat and break security with a fixed probability 1-e, while with probability e, honest parties detect the cheating attempt. Asharov and Orlandi (ASIACRYPT'12) extend covert security to enable parties to create publicly verifiable evidence about misbehavior that can be transferred to any third party. This notion is called publicly verifiable covert security (PVC) and has been investigated by multiple works. While these two notions work well in settings with known identities in which parties care about their reputation, they fall short in Internet-like settings where there are only digital identities that can provide some form of anonymity.
In this work, we propose the notion of financially backed covert security (FBC), which ensures that the adversary is financially punished if cheating is detected. Next, we present three transformations that turn PVC protocols into FBC protocols. Our protocols provide highly efficient judging, thereby enabling practical judge implementations via smart contracts deployed on a blockchain. In particular, the judge only needs to non-interactively validate a single protocol message while previous PVC protocols required the judge to emulate the whole protocol. Furthermore, by allowing an interactive punishment procedure, we can reduce the amount of validation to a single program instruction, e.g., a gate in a circuit. An interactive punishment, additionally, enables us to create financially backed covert secure protocols without any form of common public transcript, a property that has not been achieved by prior PVC protocols.

2022

PKC

Improved Constructions of Anonymous Credentials From Structure-Preserving Signatures on Equivalence Classes
📺 Abstract

Anonymous attribute-based credentials (ABCs) are a powerful tool allowing users to authenticate while maintaining privacy. When instantiated from structure-preserving signatures on equivalence classes (SPS-EQ) we obtain a controlled form of malleability, and hence increased functionality and privacy for the user. Existing constructions consider equivalence classes on the message space, allowing the joint randomization of credentials and the corresponding signatures on them. In this work, we additionally consider equivalence classes on the signing-key space. In this regard, we obtain a \emph{signer hiding} notion, where the issuing organization is not revealed when a user shows a credential. To achieve this, we instantiate the ABC framework of Fuchsbauer, Hanser, and Slamanig (FHS, Journal of Cryptology '19) with a recent SPS-EQ scheme (ASIACRYPT '19) modified to support a fully adaptive NIZK from the framework of Couteau and Hartmann (CRYPTO '20). We also show how to obtain Mercurial Signatures (CT-RSA, 2019), extending the application of our construction to anonymous delegatable credentials. To further increase functionality and efficiency, we augment the set-commitment scheme of FHS19 to support openings on attribute sets disjoint from those possessed by the user, while integrating a proof of exponentiation to allow for a more efficient verifier. Instantiating in the CRS model, we obtain an efficient credential system, anonymous under malicious organization keys, with increased expressiveness and privacy, proven secure in the standard model.

2022

PKC

KDM Security for the Fujisaki-Okamoto Transformations in the QROM
📺 Abstract

Key dependent message (KDM) security is a security notion that guarantees confidentiality of communication even if secret keys are encrypted.
KDM security has found a number of applications in practical situations such as hard-disk encryption systems, anonymous credentials, and bootstrapping of fully homomorphic encryptions. Recently, it also found an application in quantum delegation protocols as shown by Zhang (TCC 2019).
In this work, we investigate the KDM security of existing practical public-key encryption (PKE) schemes proposed in the quantum random oracle model (QROM).
Concretely, we study a PKE scheme whose KEM is constructed by using Fujisaki-Okamoto (FO) transformations in the QROM.
FO transformations are applied to an IND-CPA secure PKE schemes and yield IND-CCA secure key encapsulation mechanisms (KEM).
Then, we show the following results.
- We can reduce the KDM-CPA security in the QROM of a PKE scheme whose KEM is derived from any of the FO transformations proposed by Hofheinz et al. (TCC 2017) to the IND-CPA security of the underlying PKE scheme, without square root security loss.
For this result we use one-time-pad (OTP) as DEM to convert KEM into PKE.
- We can reduce the KDM-CCA security in the QROM of a PKE scheme whose KEM is derived from a single variant of the FO transformation proposed by Hofheinz et al. (TCC 2017) to the IND-CPA security of the underlying PKE scheme, without square root security loss. For this result, we use OTP-then-MAC construction as DEM to convert KEM into PKE. Also, we require a mild injectivity assumption for the underlying IND-CPA secure PKE scheme.
In order to avoid square root security loss, we use a double-sided one-way to hiding (O2H) lemma proposed by Kuchta et al. (EUROCRYPT 2020).
In the context of KDM security, there is a technical hurdle for using double-sided O2H lemma due to the circularity issue.
Our main technical contribution is to overcome the hurdle.

2022

PKC

Lattice-based Signatures with Tight Adaptive Corruptions and More
📺 Abstract

We construct the first tightly secure signature schemes in the multi-user setting with adaptive corruptions from lattices. In stark contrast to the previous tight constructions whose security is solely based on number-theoretic assumptions, our schemes are based on the Learning with Errors (LWE) assumption which is supposed to be post-quantum secure. The security of our scheme is independent of the numbers of users and signing queries, and it is in the non-programmable random oracle model. Our LWE-based scheme is compact, namely, its signatures contain only a constant number of lattice vectors.
At the core of our construction are a new abstraction of the existing lossy identification (ID) schemes using dual-mode commitment schemes and a refinement of the framework by Diemert et al. (PKC 2021) which transforms a lossy ID scheme to a signature using sequential OR proofs. In combination, we obtain a tight generic construction of signatures from dual-mode commitments in the multi-user setting. Improving the work of Diemert et al., our new approach can be instantiated using not only the LWE assumption, but also an isogeny-based assumption. We stress that our LWE-based lossy ID scheme in the intermediate step uses a conceptually different idea than the previous lattice-based ones.
Of independent interest, we formally rule out the possibility that the aforementioned ``ID-to-Signature'' methodology can work tightly using parallel OR proofs. In addition to the results of Fischlin et al. (EUROCRYPT 2020), our impossibility result shows a qualitative difference between both forms of OR proofs in terms of tightness.

2022

PKC

Leakage-Resilient IBE/ABE with Optimal Leakage Rates from Lattices
📺 Abstract

We derive the first adaptively secure \ibe~and \abe for t-CNF, and selectively secure \abe for general circuits from lattices, with $1-o(1)$ leakage rates, in the both relative leakage model and bounded retrieval model (\BRM).
To achieve this, we first identify a new fine-grained security notion for \abe~-- partially adaptive/selective security, and instantiate this notion from \LWE. Then, by using this notion, we design a new key compressing mechanism for identity-based/attributed-based weak hash proof system (\ib/\ab-\whps) for various policy classes, achieving (1) succinct secret keys and (2) adaptive/selective security matching the existing non-leakage resilient lattice-based designs.
Using the existing connection between weak hash proof system and leakage resilient encryption, the succinct-key \ib/\ab-\whps~can yield the desired leakage resilient \ibe/\abe schemes with the optimal leakage rates in the relative leakage model. Finally, by further improving the prior analysis of the compatible locally computable extractors, we can achieve the optimal leakage rates in the \BRM.

2022

PKC

Lifting Standard Model Reductions to Common Setup Assumptions
📺 Abstract

In this paper we show that standard model black-box reductions naturally lift to various setup assumptions, such as the random oracle (ROM) or ideal cipher model.
Concretely, we prove that a black-box reduction from a security notion $P$ to security notion $Q$ in the standard model can be turned into a non-programmable black-box reduction from $P_\oracle$ to $Q_\oracle$ in a model with a setup assumption $\oracle$, where $P_\oracle$ and $Q_\oracle$ are the natural extensions of $P$ and $Q$ to a model with a setup assumption $\oracle$.
Our results rely on a generalization of the recent framework by Hofheinz and Nguyen (PKC 2019) to support primitives which make use of a trusted setup. Our framework encompasses standard idealized settings like the random oracle and the ideal cipher model.
At the core of our main result lie novel properties of negligible functions that can be of independent interest.

2022

PKC

Lockable Obfuscation from Circularly Insecure Fully Homomorphic Encryption
📺 Abstract

In a lockable obfuscation scheme, a party called the obfuscator takes as input a circuit C, a lock value y and, a message m, and outputs an obfuscated circuit. Given the obfuscated circuit, an evaluator can run it on an input x and learn the message if C(x) = y. For security, we require that the obfuscation reveals no information on the circuit as long as the lock y has high entropy even given the circuit C.
The only known constructions of lockable obfuscation schemes require indistinguishability obfuscation (iO) or the learning with errors (LWE) assumption. Furthermore, in terms of technique, all known constructions, excluding iO-based, are build from provably secure variations of graph-induced multilinear maps.
We show a generic construction of a lockable obfuscation scheme built from a (leveled) fully homomorphic encryption scheme that is circularly insecure. Specifically, we need a fully homomorphic encryption scheme that is secure under chosen-plaintext attack (IND-CPA) but for which there is an efficient cycle tester that can detect encrypted key cycles. Our finding sheds new light on how to construct lockable obfuscation schemes and shows why cycle tester constructions were helpful in the design of lockable obfuscation schemes. One of the many use cases for lockable obfuscation schemes are constructions for IND-CPA secure but circularly insecure encryption schemes. Our work shows that there is a connection in both ways between circular insecure encryption and lockable obfuscation.

2022

PKC

Logarithmic-Size (Linkable) Threshold Ring Signatures in the Plain Model
📺 Abstract

A $1$-out-of-$N$ ring signature scheme, introduced by Rivest, Shamir, and Tauman-Kalai (ASIACRYPT '01), allows a signer to sign a message as part of a set of size $N$ (the so-called ``ring'') which are anonymous to any verifier, including other members of the ring.
Threshold ring (or ``thring'') signatures generalize ring signatures to $t$-out-of-$N$ parties, with $t \geq 1$, who anonymously sign messages and show that they are distinct signers (Bresson et al., CRYPTO'02).
Until recently, there was no construction of ring signatures that both $(i)$ had logarithmic signature size in $N$, and $(ii)$ was secure in the plain model.
The work of Backes et al. (EUROCRYPT'19) resolved both these issues. However, threshold ring signatures have their own particular problem: with a threshold $t \geq 1$, signers must often reveal their identities to the other signers as part of the signing process. This is an issue in situations where a ring member has something controversial to sign; he may feel uncomfortable requesting that other members join the threshold, as this reveals his identity.
Building on the Backes et al. template, in this work we present the first construction of a thring signature that is logarithmic-sized in $N$, in the plain model, and does not require signers to interact with each other to produce the thring signature.
We also present a linkable counterpart to our construction, which supports a fine-grained control of linkability.
Moreover, our thring signatures can easily be adapted to achieve the recent notions of claimability and repudiability (Park and Sealfon, CRYPTO'19).

2022

PKC

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN
📺 Abstract

The SPDZ protocol for multi-party computation relies on a correlated randomness setup consisting of authenticated, multiplication triples. A recent line of work by Boyle et al. (Crypto 2019, Crypto 2020) has investigated the possibility of producing this correlated randomness in a \emph{silent preprocessing} phase, which involves a ``small'' setup protocol with less communication than the total size of the triples being produced. These works do this using a tool called a \emph{pseudorandom correlation generator} (PCG), which allows a large batch of correlated randomness to be compressed into a set of smaller, correlated seeds. However, existing methods for compressing SPDZ triples only apply to the 2-party setting.
In this work, we construct a PCG for producing SPDZ triples over large prime fields in the multi-party setting. The security of our PCG is based on the ring-LPN assumption over fields, similar to the work of Boyle et al. (Crypto 2020) in the 2-party setting. We also present a corresponding, actively secure setup protocol, which can be used to generate the PCG seeds and instantiate SPDZ with a silent preprocessing phase. As a building block, which may be of independent interest, we construct a new type of 3-party distributed point function supporting outputs over arbitrary groups (including large prime order), as well as an efficient protocol for setting up our DPF keys with active security.

2022

PKC

Making Private Function Evaluation Safer, Faster, and Simpler
📺 Abstract

In the problem of two-party \emph{private function evaluation} (PFE), one party $P_A$ holds a \emph{private function} $f$ and (optionally) a private input $x_A$, while the other party $P_B$ possesses a private input $x_B$. Their goal is to evaluate $f$ on $x_A$ and $x_B$, and one or both parties may obtain the evaluation result $f(x_A, x_B)$ while no other information beyond $f(x_A, x_B)$ is revealed.
In this paper, we revisit the two-party PFE problem and provide several enhancements. We propose the \emph{first} constant-round actively secure PFE protocol with linear complexity. Based on this result, we further provide the \emph{first} constant-round publicly verifiable covertly (PVC) secure PFE protocol with linear complexity to gain better efficiency. For instance, when the deterrence factor is $\epsilon = 1/2$, compared to the passively secure protocol, its communication cost is very close and its computation cost is around $2.6\times$. In our constructions, as a by-product, we design a specific protocol for proving that a list of ElGamal ciphertexts is derived from an \emph{extended permutation} performed on a given list of elements. It should be noted that this protocol greatly improves the previous result and may be of independent interest. In addition, a reusability property is added to our two PFE protocols. Namely, if the same function $f$ is involved in multiple executions of the protocol between $P_A$ and $P_B$, then the protocol could be executed more efficiently from the second execution. Moreover, we further extend this property to be \emph{global}, such that it supports multiple executions for the same $f$ in a reusable fashion between $P_A$ and \emph{arbitrary} parties playing the role of $P_B$.

2022

PKC

Multitarget decryption failure attacks and their application to Saber and Kyber
📺 Abstract

Many lattice-based encryption schemes are subject to a very small probability of decryption failures. It has been shown that an adversary can efficiently recover the secret key using a number of ciphertexts that cause such a decryption failure. In PKC 2019, D'Anvers et al. introduced `failure boosting', a technique to speed up the search for decryption failures. In this work we first improve the state-of-the-art multitarget failure boosting attacks. We then improve the cost calculation of failure boosting and extend the applicability of these calculations to permit cost calculations of real-world schemes. Using our newly developed methodologies we determine the multitarget decryption failure attack cost for all parameter sets of Saber and Kyber, showing among others that the quantum security of Saber can theoretically be reduced from 172 bits to 145 bits in specific circumstances. We then discuss the applicability of decryption failure attacks in real-world scenarios, showing that an attack might not be practical to execute.

2022

PKC

On Pairing-Free Blind Signature Schemes in the Algebraic Group Model
📺 Abstract

Studying the security and efficiency of blind signatures is an
important goal for privacy sensitive applications. In particular, for large-
scale settings (e.g., cryptocurrency tumblers), it is important for schemes
to scale well with the number of users in the system. Unfortunately, all
practical schemes either 1) rely on (very strong) number theoretic hard-
ness assumptions and/or computationally expensive pairing operations
over bilinear groups, or 2) support only a polylogarithmic number of
concurrent (i.e., arbitrarily interleaved) signing sessions per public key.
In this work, we revisit the security of two pairing-free blind signature
schemes in the Algebraic Group Model (AGM) + Random Oracle Model
(ROM). Concretely,
1. We consider the security of Abe’s scheme (EUROCRYPT ‘01), which
is known to have a flawed proof in the plain ROM. We adapt the
scheme to allow a partially blind variant and give a proof of the new
scheme under the discrete logarithm assumption in the AGM+ROM,
even for (polynomially many) concurrent signing sessions.
2. We then prove that the popular blind Schnorr scheme is secure un-
der the one-more discrete logarithm assumption if the signatures
are issued sequentially. While the work of Fuchsbauer et al. (EURO-
CRYPT ‘20) proves the security of the blind Schnorr scheme for con-
current signing sessions in the AGM+ROM, its underlying assump-
tion, ROS, is proven false by Benhamouda et al. (EUROCRYPT
‘21) when more than polylogarithmically many signatures are issued.
Given the recent progress, we present the first security analysis of the
blind Schnorr scheme in the slightly weaker sequential setting. We
also show that our security proof reduces from the weakest possible
assumption, with respect to known reduction techniques.

2022

PKC

On the Bottleneck Complexity of MPC with Correlated Randomness
📺 Abstract

At ICALP 2018, Boyle et al. introduced the notion of the \emph{bottleneck complexity} of a secure multi-party computation (MPC) protocol. This measures the maximum communication complexity of any one party in the protocol, aiming to improve load-balancing among the parties.
In this work, we study the bottleneck complexity of MPC in the preprocessing model, where parties are given correlated randomness ahead of time.
We present two constructions of \emph{bottleneck-efficient} MPC protocols, whose bottleneck complexity is independent of the number of parties:
1. A protocol for computing abelian programs, based only on one-way functions.
2. A protocol for selection functions, based on any linearly homomorphic encryption scheme.
Compared with previous bottleneck-efficient constructions, our protocols can be based on a wider range of assumptions, and avoid the use of fully homomorphic encryption.

2022

PKC

On the Isogeny Problem with Torsion Point Information
📺 Abstract

It has recently been rigorously proven (and was previously known under certain heuristics) that the general supersingular isogeny problem reduces to the supersingular endomorphism ring computation problem. However, in order to attack SIDH-type schemes, one requires a particular isogeny which is usually not returned by the general reduction. At Asiacrypt 2016, Galbraith, Petit, Shani and Ti presented a polynomial-time reduction of the problem of finding the secret isogeny in SIDH to the problem of computing the endomorphism ring of a supersingular elliptic curve. Their method exploits the fact that secret isogenies in SIDH are of degree approximately $p^{1/2}$. The method does not extend to other SIDH-type schemes, where secret isogenies of larger degree are used and this condition is not fulfilled.
We present a more general reduction algorithm that generalises to all SIDH-type schemes. The main idea of our algorithm is to exploit available torsion point images together with the KLPT algorithm to obtain a linear system of equations over a certain residue class ring. We show that this system will have a unique solution that can be lifted to the integers if some mild conditions on the parameters are satisfied. This lift then yields the secret isogeny. One consequence of this work is that the choice of the prime $p$ in \mbox{B-SIDH} is tight.

2022

PKC

On the security of OSIDH
📺 Abstract

The Oriented Supersingular Isogeny Diffie-Hellman is a post-quantum key exchange scheme recently introduced by Colò and Kohel. It is based on the group action of an ideal class group of a quadratic imaginary order on a subset of supersingular elliptic curves, and in this sense it can be viewed as a generalization of the popular isogeny based key exchange CSIDH. From an algorithmic standpoint, however, OSIDH is quite different from CSIDH. In a sense, OSIDH uses class groups which are more structured than in CSIDH, creating a potential weakness that was already recognized by Colò and Kohel. To circumvent the weakness, they proposed an ingenious way to realize a key exchange by exchanging partial information on how the class group acts in the neighborhood of the public curves, and conjectured that this additional information would not impact security.
In this work we revisit the security of OSIDH by presenting a new attack, building upon previous work of Onuki. Our attack has exponential complexity, but it practically breaks Colò and Kohel's parameters unlike Onuki's attack. We also discuss countermeasures to our attack, and analyze their impact on OSIDH, both from an efficiency and a functionality point of view.

2022

PKC

Polynomial IOPs for Linear Algebra Relations
📺 Abstract

This paper proposes new Polynomial IOPs for arithmetic circuits. They rely on the monomial coefficient basis to represent the matrices and vectors arising from the arithmetic constraint satisfaction system, and build on new protocols for establishing the correct computation of linear algebra relations such as matrix-vector products and Hadamard products. Our protocols give rise to concrete proof systems with succinct verification when compiled down with a cryptographic compiler whose role is abstracted away in this paper. Depending only on the compiler, the resulting SNARKs are either transparent or rely on a trusted setup.

2022

PKC

Post-Quantum Anonymous One-Sided Authenticated Key Exchange without Random Oracles
📺 Abstract

Authenticated Key Exchange (AKE) is a cryptographic protocol to share a common session key among multiple parties. Usually, PKI-based AKE schemes are designed to guarantee secrecy of the session key and mutual authentication. However, in practice, there are many cases where mutual authentication is undesirable such as in anonymous networks like Tor and Riffle, or difficult to achieve due to the certificate management at the user level such as the Internet. Goldberg et al. formulated a model of anonymous one-sided AKE which guarantees the anonymity of the client by allowing only the client to authenticate the server, and proposed a concrete scheme. However, existing anonymous one-sided AKE schemes are only known to be secure in the random oracle model. In this paper, we propose generic constructions of anonymous one-sided AKE in the random oracle model and in the standard model, respectively. Our constructions allow us to construct the first post-quantum anonymous one-sided AKE scheme from isogenies in the standard model.

2022

PKC

Post-quantum Asynchronous Deniable Key Exchange and the Signal Handshake
📺 Abstract

The key exchange protocol that establishes initial shared secrets in the handshake of the Signal end-to-end encrypted messaging protocol has several important characteristics:
(1) it runs asynchronously (without both parties needing to be simultaneously online),
(2) it provides implicit mutual authentication while retaining deniability (transcripts cannot be used to prove either party participated in the protocol),
and (3) it retains security even if some keys are compromised (forward secrecy and beyond).
All of these properties emerge from clever use of the highly flexible Diffie--Hellman protocol.
While quantum-resistant key encapsulation mechanisms (KEMs) can replace Diffie--Hellman key exchange in some settings, there is no KEM-based replacement for the Signal handshake that achieves all three aforementioned properties, in part due to the inherent asymmetry of KEM operations.
In this paper, we show how to construct asynchronous deniable key exchange by combining KEMs and designated verifier signature (DVS) schemes.
There are several candidates for post-quantum DVS schemes, either direct constructions or via ring signatures.
This yields a template for an efficient post-quantum realization of the Signal handshake with the same asynchronicity and security properties as the original Signal protocol.

2022

PKC

Post-quantum Security of Plain OAEP Transform
📺 Abstract

In this paper, we show that OAEP transform is
indistinguishable under chosen ciphertext attack in the quantum random oracle model
if the underlying trapdoor permutation is quantum partial-domain one-way.
The existing post-quantum security of OAEP (TCC 2016-B )
requires a modification to the OAEP transform using an extra hash function.
We prove the security of the OAEP transform without any modification
and this answers an open question in
one of the finalists of NIST competition, NTRU submission, affirmatively.

2022

PKC

Radical Isogenies on Montgomery Curves
📺 Abstract

We work on some open problems in radical isogenies. Radical isogenies are formulas to compute chains of N-isogenies for small N and proposed by Castryck, Decru, and Vercauteren in Asiacrypt 2020. These formulas do not need to generate a point of order N generating the kernel and accelerate some isogeny-based cryptosystems like CSIDH. On the other hand, since these formulas use Tate normal forms, these need to transform Tate normal forms to curves with efficient arithmetic, e.g., Montgomery curves. In this paper, we propose radical-isogeny formulas of degrees 3 and 4 on Montgomery curves. Our formulas compute some values determining Montgomery curves, from which one can efficiently recover Montgomery coefficients. And our formulas are more efficient for some cryptosystems than the original radical isogenies. In addition, we prove a conjecture left open by Castryck et al. that relates to radical isogenies of degree 4.

2022

PKC

Rational Modular Encoding in the DCR Setting: Non-Interactive Range Proofs and Paillier-Based Naor-Yung in the Standard Model
📺 Abstract

Range proofs allow a sender to convince a verifier that committed integers belong to an interval without revealing anything else. So far, all known non-interactive range proofs in the standard model rely on groups endowed with a bilinear map. Moreover, they either require the group order to be larger than the range of any proven statement or they suffer from a wasteful rate. Recently (Eurocrypt'21), Couteau et al. introduced a new approach to efficiently prove range membership by encoding integers as a modular ratio between small integers. We show that their technique can be transposed in the standard model under the Composite Residuosity (DCR) assumption. Interestingly, with this modification, the size of ranges is not a priori restricted by the common reference string. It also gives a constant ratio between the size of ranges and proofs. Moreover, we show that their technique of encoding messages as bounded rationals provides a secure standard model instantiation of the Naor-Yung CCA2 encryption paradigm under the DCR assumption.
Keywords: Range proofs, NIZK, standard model, Naor-Yung.

2022

PKC

Reusable Two-Round MPC from LPN
📺 Abstract

We present a new construction of maliciously-secure, two-round multiparty computation (MPC) in the CRS model, where the first message is reusable an unbounded number of times. The security of the protocol relies on the Learning Parity with Noise (LPN) assumption with inverse polynomial noise rate $1/n^{1-\epsilon}$ for small enough constant $\epsilon$, where $n$ is the LPN dimension. Prior works on reusable two-round MPC required assumptions such as DDH or LWE that imply some flavor of homomorphic computation. We obtain our result in two steps:
- In the first step, we construct a two-round MPC protocol in the {\it silent pre-processing model} (Boyle et al., Crypto 2019). Specifically, the parties engage in a computationally inexpensive setup procedure that generates some correlated random strings. Then, the parties commit to their inputs. Finally, each party sends a message depending on the function to be computed, and these messages can be decoded to obtain the output. Crucially, the complexity of the pre-processing phase and the input commitment phase do not grow with the size of the circuit to be computed. We call this {\it multiparty silent NISC} (msNISC), generalizing the notion of two-party silent NISC of Boyle et al. (CCS 2019). We provide a construction of msNISC from LPN in the random oracle model.
- In the second step, we give a transformation that removes the pre-processing phase and use of random oracle from the previous protocol. This transformation additionally adds (unbounded) reusability of the first round message, giving the first construction of reusable two-round MPC from the LPN assumption. This step makes novel use of randomized encoding of circuits (Applebaum et al., FOCS 2004) and a variant of the ``tree of MPC messages" technique of Ananth et al. and Bartusek et al. (TCC 2020).

2022

PKC

Storing and Retrieving Secrets on a blockchain
📺 Abstract

A secret sharing scheme enables one party to distribute shares of a secret to n parties and ensures that an adversary in control of t out of n parties will learn no information about the secret. However, traditional secret sharing schemes are often insufficient, especially for applications in which the set of parties who hold the secret shares might change over time. To achieve security in this setting, dynamic proactive secret sharing (DPSS) is used. DPSS schemes proactively update the secret shares held by the parties and allow changes to the set of parties holding the secrets. We propose FaB-DPSS (FAst Batched DPSS) -- a new and highly optimized batched DPSS scheme. While previous work on batched DPSS focuses on a single client submitting a batch of secrets and does not allow storing and releasing secrets independently, we allow multiple different clients to dynamically share and release secrets. FaB-DPSS is the most efficient robust DPSS scheme that supports the highest possible adversarial threshold of 1/2. We prove FaB-DPSS secure and implement it. All operations complete in seconds, and we outperform a prior state-of-the-art DPSS scheme by over 6 times.
Additionally, we propose new applications of DPSS in the context of blockchains. Specifically, we propose a protocol that uses blockchains and FaB-DPSS to provide conditional secret storage. The protocol allows parties to store secrets along with a release condition, and once a (possibly different) party satisfies this release condition, the secret is privately released to that party. This functionality is similar to extractable witness encryption. While there are numerous compelling applications (e.g., time-lock encryption, one-time programs, and fair multi-party computation) which rely on extractable witness encryption, there are no known efficient constructions (or even constructions based on any well-studied assumptions) of extractable witness encryption. However, by utilizing blockchains and FaB-DPSS, we can easily build all those applications. We provide an implementation of our conditional secret storage protocol as well as several applications building on top of it.

2022

PKC

Syndrome Decoding Estimator
📺 Abstract

The selection of secure parameter sets requires an estimation of the attack cost to break the respective cryptographic scheme instantiated under these parameters. The current NIST standardization process for post-quantum schemes makes this an urgent task, especially considering the announcement to select final candidates by the end of 2021. For code-based schemes, recent estimates seemed to contradict the claimed security of most proposals, leading to a certain doubt about the correctness of those estimates. Furthermore, none of the available estimates includes most recent algorithmic improvements on decoding linear codes, which are based on information set decoding (ISD) in combination with nearest neighbor search. In this work we observe that \emph{all} major ISD improvements are build on nearest neighbor search, explicitly or implicitly. This allows us to derive a framework from which we obtain \emph{practical} variants of all relevant ISD algorithms including the most recent improvements. We derive formulas for the practical attack costs and make those online available in an easy to use estimator tool written in python and C. Eventually, we provide classical and quantum estimates for the bit security of all parameter sets of current code-based NIST proposals.

2022

PKC

The Direction of Updatable Encryption Does Matter
📺 Abstract

We introduce a new definition for key updates, called backward-leak uni-directional key updates, in updatable encryption (UE). This notion is a variant of uni-directional key updates for UE. We show that existing secure UE schemes in the bi-directional key updates setting are not secure in the backward-leak uni-directional key updates setting. Thus, security in the backward-leak uni-directional key updates setting is strictly stronger than security in the bi-directional key updates setting. This result is in sharp contrast to the equivalence theorem by Jiang (Asiacrypt 2020), which says security in the bi-directional key updates setting is equivalent to security in the existing uni-directional key updates setting. We call the existing uni-directional key updates ``forward-leak uni-directional'' key updates to distinguish two types of uni-directional key updates in this paper.
We also present two UE schemes with the following features.
- The first scheme is post-quantum secure in the backward-leak uni-directional key updates setting under the learning with errors assumption.
- The second scheme is secure in the no-directional key updates setting and based on indistinguishability obfuscation and one-way functions. This result solves the open problem left by Jiang (Asiacrypt 2020).

2022

PKC

Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes
📺 Abstract

We propose new algorithms for solving a class of large-weight syndrome decoding problems in random ternary codes. This is the main generic problem underlying the security of the recent Wave signature scheme (Debris-Alazard et al., 2019), and it has so far received limited attention. At SAC 2019 Bricout et al. proposed a reduction to a binary subset sum problem requiring many solutions, and used it to obtain the fastest known algorithm. However —as is often the case in the coding theory literature— its memory cost is proportional to its time cost, which makes it unattractive in most applications.
In this work we propose a range of memory-efficient algorithms for this problem, which describe a near-continuous time-memory tradeoff curve. Those are obtained by using the same reduction as Bricout et al. and carefully instantiating the derived subset sum problem with exhaustive- search algorithms from the literature, in particular dissection (Dinur et al., 2012) and dissection in tree (Dinur, 2019). We also spend significant effort adapting those algorithms to decrease their granularity, thereby allowing them to be smoothly used in a syndrome decoding context when not all the solutions to the subset sum problem are required. For a proposed parameter set for Wave, one of our best instantiations is estimated to cost 2^177 bit operations and requiring 2^88.5 bits of storage, while we estimate this to be 2^152 and 2^144 for the best algorithm from Bricout et al..

2022

PKC

Towards a Simpler Lattice Gadget Toolkit
📺 Abstract

As a building block, gadgets and associated algorithms are widely used in advanced lattice cryptosystems. The gadget algorithms for power-of-base moduli are very efficient and simple, however the current algorithms for arbitrary moduli are still complicated and practically more costly despite several efforts. Considering the necessity of arbitrary moduli, developing simpler and more practical gadget algorithms for arbitrary moduli is crucial to improving the practical performance of lattice based applications.
In this work, we propose two new gadget sampling algorithms for arbitrary moduli. Our first algorithm is for gadget Gaussian sampling. It is simple and efficient. One distinguishing feature of our Gaussian sampler is that it does not need floating-point arithmetic, which makes it better compatible with constrained environments. Our second algorithm is for gadget subgaussian sampling. Compared with the existing algorithm, it is simpler, faster, and requires asymptotically less randomness. In addition, our subgaussian sampler achieves an almost equal quality for different practical parameters. Overall these two algorithms provide simpler options for gadget algorithms and enhance the practicality of the gadget toolkit.

2022

PKC

Traceable PRFs: Full Collusion Resistance and Active Security
📺 Abstract

The main goal of traceable cryptography is to protect against unauthorized redistribution of cryptographic functionalities. Such schemes provide a way to embed identities (i.e., a "mark") within cryptographic objects (e.g., decryption keys in an encryption scheme, signing keys in a signature scheme). In turn, the tracing guarantee ensures that any "pirate device" that successfully replicates the underlying functionality can be successfully traced to the set of identities used to build the device.
In this work, we study traceable pseudorandom functions (PRFs). As PRFs are the workhorses of symmetric cryptography, traceable PRFs are useful for augmenting symmetric cryptographic primitives with strong traceable security guarantees. However, existing constructions of traceable PRFs either rely on strong notions like indistinguishability obfuscation or satisfy weak security guarantees like single-key security (i.e., tracing only works against adversaries that possess a single marked key).
In this work, we show how to use fingerprinting codes to upgrade a single-key traceable PRF into a fully collusion resistant traceable PRF, where security holds regardless of how many keys the adversary possesses. We additionally introduce a stronger notion of security where tracing security holds even against active adversaries that have oracle access to the tracing algorithm. In conjunction with known constructions of single-key traceable PRFs, we obtain the first fully collusion resistant traceable PRF from standard lattice assumptions. Our traceable PRFs directly imply new lattice-based secret-key traitor tracing schemes that are CCA-secure and where tracing security holds against active adversaries that have access to the tracing oracle.

2022

PKC

Two-Round Oblivious Linear Evaluation from Learning with Errors
📺 Abstract

Oblivious Linear Evaluation (OLE) is the arithmetic analogue of the well-know oblivious transfer primitive. It allows a sender, holding an affine function $f(x)=a+bx$ over a finite field or ring, to let a receiver learn $f(w)$ for a $w$ of the receiver's choice. In terms of security, the sender remains oblivious of the receiver's input $w$, whereas the receiver learns nothing beyond $f(w)$ about $f$. In recent years, OLE has emerged as an essential building block to construct efficient, reusable and maliciously-secure two-party computation.
In this work, we present efficient two-round protocols for OLE over large fields based on the Learning with Errors (LWE) assumption, providing a full arithmetic generalization of the oblivious transfer protocol of Peikert, Vaikuntanathan and Waters (CRYPTO 2008). At the technical core of our work is a novel extraction technique which allows to determine if a non-trivial multiple of some vector is close to a $q$-ary lattice.