## CryptoDB

### Yang Yu

#### Publications

**Year**

**Venue**

**Title**

2022

PKC

Towards a Simpler Lattice Gadget Toolkit
📺
Abstract

As a building block, gadgets and associated algorithms are widely used in advanced lattice cryptosystems. The gadget algorithms for power-of-base moduli are very efficient and simple, however the current algorithms for arbitrary moduli are still complicated and practically more costly despite several efforts. Considering the necessity of arbitrary moduli, developing simpler and more practical gadget algorithms for arbitrary moduli is crucial to improving the practical performance of lattice based applications.
In this work, we propose two new gadget sampling algorithms for arbitrary moduli. Our first algorithm is for gadget Gaussian sampling. It is simple and efficient. One distinguishing feature of our Gaussian sampler is that it does not need floating-point arithmetic, which makes it better compatible with constrained environments. Our second algorithm is for gadget subgaussian sampling. Compared with the existing algorithm, it is simpler, faster, and requires asymptotically less randomness. In addition, our subgaussian sampler achieves an almost equal quality for different practical parameters. Overall these two algorithms provide simpler options for gadget algorithms and enhance the practicality of the gadget toolkit.

2022

TCHES

BAT: Small and Fast KEM over NTRU Lattices
Abstract

We present $\BAT$ -- an IND-CCA secure key encapsulation mechanism (KEM) that is based on NTRU but follows an encryption/decryption paradigm distinct from classical NTRU KEMs.
It demonstrates a new approach of decrypting NTRU ciphertext since its introduction 25 years ago. Instead of introducing an artificial masking parameter $p$ to decrypt the ciphertext, we use 2 linear equations in 2 unknowns to recover the message and the error. The encryption process is therefore close to the GGH scheme. However, since the secret key is now a short basis (not a vector), we need to modify the decryption algorithm and we present a new NTRU decoder. Thanks to the improved decoder, our scheme works with a smaller modulus and yields shorter ciphertexts, smaller than RSA-4096 for 128-bit classical security with comparable public-key size and much faster than RSA or even ECC. Meanwhile, the encryption and decryption are still simple and fast in spite of the complicated key generation. Overall, our KEM has more compact parameters than all current lattice-based schemes and a practical efficiency. Moreover, due to the similar key pair structure, $\BAT$ can be of special interest in some applications using Falcon signature that is also the most compact signature in the round 3 of the NIST post-quantum cryptography standardization. However, different from Falcon, our KEM does not rely on floating-point arithmetic and can be fully implemented over the integers.

2022

EUROCRYPT

Mitaka: A Simpler, Parallelizable, Maskable Variant of Falcon
Abstract

This work describes the Mitaka signature scheme: a new hash-and-sign
signature scheme over NTRU lattices which can be seen as a variant of
NIST finalist Falcon. It achieves comparable efficiency but is
considerably simpler, online/offline, and easier to parallelize and
protect against side-channels, thus offering significant advantages from
an implementation standpoint. It is also much more versatile in terms of
parameter selection.
We obtain this signature scheme by replacing the FFO lattice Gaussian
sampler in Falcon by the “hybrid” sampler of Ducas and Prest, for
which we carry out a detailed and corrected security analysis. In
principle, such a change can result in a substantial security loss, but
we show that this loss can be largely mitigated using new techniques in
key generation that allow us to construct much higher quality lattice
trapdoors for the hybrid sampler relatively cheaply. This new approach
can also be instantiated on a wide variety of base fields, in contrast
with Falcon's restriction to power-of-two cyclotomics.
We also introduce a new lattice Gaussian sampler with the same quality
and efficiency, but which is moreover compatible with the integral matrix
Gram root technique of Ducas et al., allowing us to avoid floating point
arithmetic. This makes it possible to realize the same signature
scheme as Mitaka efficiently on platforms with poor support for
floating point numbers.
Finally, we describe a provably secure masking of Mitaka. More precisely,
we introduce novel gadgets that allow provable masking at any order at much
lower cost than previous masking techniques for Gaussian sampling-based
signature schemes, for cheap and dependable side-channel protection.

2022

TCHES

BAT: Small and Fast KEM over NTRU Lattices
Abstract

We present BAT – an IND-CCA secure key encapsulation mechanism (KEM) that is based on NTRU but follows an encryption/decryption paradigm distinct from classical NTRU KEMs. It demonstrates a new approach of decrypting NTRU ciphertext since its introduction 25 years ago. Instead of introducing an artificial masking parameter p to decrypt the ciphertext, we use 2 linear equations in 2 unknowns to recover the message and the error. The encryption process is therefore close to the GGH scheme. However, since the secret key is now a short basis (not a vector), we need to modify the decryption algorithm and we present a new NTRU decoder. Thanks to the improved decoder, our scheme works with a smaller modulus and yields shorter ciphertexts, smaller than RSA-4096 for 128-bit classical security with comparable public-key size and much faster than RSA or even ECC. Meanwhile, the encryption and decryption are still simple and fast in spite of the complicated key generation. Overall, our KEM has more compact parameters than all current lattice-based schemes and a practical efficiency. Moreover, due to the similar key pair structure, BAT can be of special interest in some applications using Falcon signature that is also the most compact signature in the round 3 of the NIST post-quantum cryptography standardization. However, different from Falcon, our KEM does not rely on floating-point arithmetic and can be fully implemented over the integers.

2020

EUROCRYPT

Integral Matrix Gram Root and Lattice Gaussian Sampling without Floats
📺
Abstract

Many advanced lattice based cryptosystems require to sample lattice points from Gaussian distributions. One challenge for this task is that all current algorithms resort to floating-point arithmetic (FPA) at some point, which has numerous drawbacks in practice: it requires numerical stability analysis, extra storage for high-precision, lazy/backtracking techniques for efficiency, and may suffer from weak determinism which can completely break certain schemes.
In this paper, we give techniques to implement Gaussian sampling over general lattices without using FPA. To this end, we revisit the approach of Peikert, using perturbation sampling. Peikert's approach uses continuous Gaussian sampling and some decomposition $\BSigma = \matA \matA^t$ of the target covariance matrix $\BSigma$. The suggested decomposition, e.g. the Cholesky decomposition, gives rise to a square matrix $\matA$ with real (not integer) entries. Our idea, in a nutshell, is to replace this decomposition by an integral one. While there is in general no integer solution if we restrict $\matA$ to being a square matrix, we show that such a decomposition can be efficiently found by allowing $\matA$ to be wider (say $n \times 9n$). This can be viewed as an extension of Lagrange's four-square theorem to matrices. In addition, we adapt our integral decomposition algorithm to the ring setting: for power-of-2 cyclotomics, we can exploit the tower of rings structure for improved complexity and compactness.

2020

EUROCRYPT

Key Recovery from Gram--Schmidt Norm Leakage in Hash-and-Sign Signatures over NTRU Lattices
📺
Abstract

In this paper, we initiate the study of side-channel leakage in hash-and-sign lattice-based signatures, with particular emphasis on the two efficient implementations of the original GPV lattice-trapdoor paradigm for signatures, namely NIST second-round candidate Falcon and its simpler predecessor DLP. Both of these schemes implement the GPV signature scheme over NTRU lattices, achieving great speed-ups over the general lattice case. Our results are mainly threefold.
First, we identify a specific source of side-channel leakage in most implementations of those schemes, namely, the one-dimensional Gaussian sampling steps within lattice Gaussian sampling. It turns out that the implementations of these steps often leak the Gram--Schmidt norms of the secret lattice basis.
Second, we elucidate the link between this leakage and the secret key, by showing that the entire secret key can be efficiently reconstructed solely from those Gram--Schmidt norms. The result makes heavy use of the algebraic structure of the corresponding schemes, which work over a power-of-two cyclotomic field.
Third, we concretely demonstrate the side-channel attack against DLP (but not Falcon due to the different structures of the two schemes). The challenge is that timing information only provides an approximation of the Gram--Schmidt norms, so our algebraic recovery technique needs to be combined with pruned tree search in order to apply it to approximate values. Experimentally, we show that around $2^{35}$ DLP traces are enough to reconstruct the entire key with good probability.

2020

JOFC

Learning Strikes Again: The Case of the DRS Signature Scheme
Abstract

Lattice signature schemes generally require particular care when it comes to preventing secret information from leaking through signature transcript. For example, the Goldreich–Goldwasser–Halevi (GGH) signature scheme and the NTRUSign scheme were completely broken by the parallelepiped-learning attack of Nguyen and Regev (Eurocrypt 2006). Several heuristic countermeasures were also shown vulnerable to similar statistical attacks. At PKC 2008, Plantard, Susilo and Win proposed a new variant of GGH, informally arguing resistance to such attacks. Based on this variant, Plantard, Sipasseuth, Dumondelle and Susilo proposed a concrete signature scheme, called DRS, that is in the round 1 of the NIST post-quantum cryptography project. In this work, we propose yet another statistical attack and demonstrate a weakness of the DRS scheme: one can recover some partial information of the secret key from sufficiently many signatures. One difficulty is that, due to the DRS reduction algorithm, the relation between the statistical leak and the secret seems more intricate. We work around this difficulty by training a statistical model, using a few features that we designed according to a simple heuristic analysis. While we only recover partial secret coefficients, this information is easily exploited by lattice attacks, significantly decreasing their complexity. Concretely, we claim that, provided that $$100\,000$$ 100 000 signatures are available, the secret key may be recovered using BKZ-138 for the first set of DRS parameters submitted to the NIST. This puts the security level of this parameter set below 80-bits (maybe even 70-bits), to be compared to an original claim of 128-bits. Furthermore, we review the DRS v2 scheme that is proposed to resist above statistical attack. For this countermeasure, while one may not recover partial secret coefficients exactly by learning, it seems feasible to gain some information on the secret key. Exploiting this information, we can still effectively reduce the cost of lattice attacks.

2018

ASIACRYPT

Learning Strikes Again: The Case of the DRS Signature Scheme
Abstract

Lattice signature schemes generally require particular care when it comes to preventing secret information from leaking through signature transcript. For example, the Goldreich-Goldwasser-Halevi (GGH) signature scheme and the NTRUSign scheme were completely broken by the parallelepiped-learning attack of Nguyen and Regev (Eurocrypt 2006). Several heuristic countermeasures were also shown vulnerable to similar statistical attacks.At PKC 2008, Plantard, Susilo and Win proposed a new variant of GGH, informally arguing resistance to such attacks. Based on this variant, Plantard, Sipasseuth, Dumondelle and Susilo proposed a concrete signature scheme, called DRS, that has been accepted in the round 1 of the NIST post-quantum cryptography project.In this work, we propose yet another statistical attack and demonstrate a weakness of the DRS scheme: one can recover some partial information of the secret key from sufficiently many signatures. One difficulty is that, due to the DRS reduction algorithm, the relation between the statistical leak and the secret seems more intricate. We work around this difficulty by training a statistical model, using a few features that we designed according to a simple heuristic analysis.While we only recover partial information on the secret key, this information is easily exploited by lattice attacks, significantly decreasing their complexity. Concretely, we claim that, provided that $$100\,000$$ signatures are available, the secret key may be recovered using BKZ-138 for the first set of DRS parameters submitted to the NIST. This puts the security level of this parameter set below 80-bits (maybe even 70-bits), to be compared to an original claim of 128-bits.

#### Coauthors

- Léo Ducas (3)
- Thomas Espitau (1)
- Pierre-Alain Fouque (4)
- Steven D. Galbraith (1)
- François Gérard (1)
- Paul Kirchner (3)
- Thomas Pornin (2)
- Thomas Prest (1)
- Mélissa Rossi (1)
- Akira Takahashi (1)
- Mehdi Tibouchi (2)
- Alexandre Wallet (2)
- Xiaoyun Wang (1)
- Guangwu Xu (1)
- Shiduo Zhang (1)