International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Zhedong Wang

Publications

Year
Venue
Title
2020
PKC
Almost Tight Security in Lattice with Polynomial Moduli - PRF, IBE, All-but-many LTF, and More 📺
Qiqi Lai Feng-Hao Liu Zhedong Wang
Achieving tight security is a fundamental task in cryptography. While one of the most important purposes of this task is to improve the overall efficiency of a construction (by allowing smaller security parameters), many current lattice-based instantiations do not completely achieve the goal. Particularly, a super-polynomial modulus seems to be necessary in all prior work for (almost) tight schemes that allow the adversary to conduct queries, such as PRF, IBE, and Signatures. As the super-polynomial modulus would affect the noise-to-modulus ratio and thus increase the parameters, this might cancel out the advantages (in efficiency) brought from the tighter analysis. To determine the full power of tight security/analysis in lattices, it is necessary to determine whether the super-polynomial modulus restriction is inherent. In this work, we remove the super-polynomial modulus restriction for many important primitives – PRF, IBE, All-but-many Lossy Trapdoor Functions, and Signatures. The crux relies on an improvement over the framework of Boyen and Li (Asiacrypt 16), and an almost tight reduction from LWE to LWR, which improves prior work by Alwen et al. (Crypto 13), Bogdanov et al. (TCC 16), and Bai et al. (Asiacrypt 15). By combining these two advances, we are able to derive these almost tight schemes under LWE with a polynomial modulus.
2020
CRYPTO
Rounding in the Rings 📺
Feng-Hao Liu Zhedong Wang
In this work, we conduct a comprehensive study on establishing hardness reductions for (Module) Learning with Rounding over rings (RLWR). Towards this, we present an algebraic framework of LWR, inspired by a recent work of Peikert and Pepin (TCC '19). Then we show a search-to-decision reduction for Ring-LWR, generalizing a result in the plain LWR setting by Bogdanov et al. (TCC '15). Finally, we show a reduction from Ring-LWE to Module Ring-LWR (even for leaky secrets), generalizing the plain LWE to LWR reduction by Alwen et al. (Crypto '13). One of our central techniques is a new ring leftover hash lemma, which might be of independent interests.
2019
PKC
FE for Inner Products and Its Application to Decentralized ABE
Zhedong Wang Xiong Fan Feng-Hao Liu
In this work, we revisit the primitive functional encryption (FE) for inner products and show its application to decentralized attribute-based encryption (ABE). Particularly, we derive an FE for inner products that satisfies a stronger notion, and show how to use such an FE to construct decentralized ABE for the class $$\{0,1\}$$-$$\mathsf {LSSS} $$ against bounded collusions in the plain model. We formalize the FE notion and show how to achieve such an FE under the LWE or DDH assumption. Therefore, our resulting decentralized ABE can be constructed under the same standard assumptions, improving the prior construction by Lewko and Waters (Eurocrypt 2011). Finally, we also point out challenges to construct decentralized ABE for general functions by establishing a relation between such an ABE and witness encryption for general NP statements.

Coauthors

Xiong Fan (1)
Qiqi Lai (1)
Feng-Hao Liu (3)