International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Papers from PKC 2020

Year
Venue
Title
2020
PKC
How Low Can We Go?
Invited talk
Given a cryptographic task, such as encrypting a message or securely computing a given function, a natural question is to find the "minimal cost" of carrying out this task. The question can take a variety of forms, depending on the cost measure. For instance, one can try to minimize computation, communication, rounds, or randomness. In the case of computational cost, one can consider different computation models, such as circuits or branching programs, and different cost metrics, such as size or depth. The answer to the question may further depend on the type of computational assumptions one is willing to make. The study of this question, for different cryptographic tasks and clean asymptotic cost measures, has led to a rich body of work with useful and often unexpected results. The talk will survey some of this work, highlighting connections between different research areas in cryptography and relevance beyond cryptography. In addition to the direct interest in minimizing well-motivated complexity measures, there are cases in which ``high-end' cryptographic tasks, such as secure multiparty computation or program obfuscation, call for minimizing different cost measures of lower-end primitives that would otherwise seem poorly motivated. I will give some examples of this kind. Finally, I will make the case that despite the progress already made, there is much more to be explored. Research in this area can greatly benefit from more cooperation between theoretical and applied cryptographers, as well as between cryptographers and researchers from other fields, including computational complexity, algorithms, computational learning theory, coding and information theory.
2020
PKC
Master-Key KDM-Secure IBE from Pairings 📺
Identity-based encryption (IBE) is a generalization of public-key encryption (PKE) by allowing encryptions to be made to user identities. In this work, we seek to obtain IBE schemes that achieve key-dependent-message (KDM) security with respect to messages that depend on the master secret key. Previous KDM-secure schemes only achieved KDM security in simpler settings, in which messages may only depend on user secret keys. An important motivation behind studying master-KDM security is the application of this notion in obtaining generic constructions of KDM-CCA secure PKE, a primitive notoriously difficult to realize. We give the first IBE that achieves master-KDM security from standard assumptions in pairing groups. Our construction is modular and combines techniques from KDM-secure PKE based from hash-proof systems, together with IBE that admits a tight security proof in the multi-challenge setting, which happens to be unexpectedly relevant in the context of KDM security. In fact, to the best of our knowledge, this is the first setting where techniques developed in the context of realizing tightly secure cryptosystems have led to a new feasibility result. As a byproduct, our KDM-secure IBE, and thus the resulting KDM-CCA-secure PKE both enjoy a tight security reduction, independent of the number of challenge ciphertexts, which was not achieved before.
2020
PKC
Boosting Verifiable Computation on Encrypted Data 📺
We consider the setting in which an untrusted server stores a collection of data and is asked to compute a function over it. In this scenario, we aim for solutions where the untrusted server does not learn information about the data and is prevented from cheating. This problem is addressed by verifiable and private delegation of computation, proposed by Gennaro, Gentry and Parno (CRYPTO’10), a notion that is close to both the active areas of homomorphic encryption and verifiable computation (VC). However, in spite of the efficiency advances in the respective areas, VC protocols that guarantee privacy of the inputs are still expensive. The only exception is a protocol by Fiore, Gennaro and Pastro (CCS’14) that supports arithmetic circuits of degree at most 2. In this paper we propose new efficient protocols for VC on encrypted data that improve over the state of the art solution of Fiore et al. in multiple aspects. First, we can support computations of degree higher than 2. Second, we achieve public delegatability and public verifiability whereas Fiore et al. need the same secret key to encode inputs and verify outputs. Third, we achieve a new property that guarantees that verifiers can be convinced about the correctness of the outputs without learning information on the inputs. The key tool to obtain our new protocols is a new SNARK that can efficiently handle computations over a quotient polynomial ring, such as the one used by Ring-LWE somewhat homomorphic encryption schemes. This SNARK in turn relies on a new commit-and-prove SNARK for proving evaluations on the same point of several committed polynomials. We propose a construction of this scheme under an extractability assumption over bilinear groups in the random oracle model.
2020
PKC
Hierarchical Identity-Based Encryption with Tight Multi-challenge Security 📺
We construct the first hierarchical identity-based encryption (HIBE) scheme with tight adaptive security in the multi-challenge setting, where adversaries are allowed to ask for ciphertexts for multiple adaptively chosen identities. Technically, we develop a novel technique that can tightly introduce randomness into user secret keys for hierarchical identities in the multi-challenge setting, which cannot be easily achieved by the existing techniques for tightly multi-challenge secure IBE. In contrast to the previous constructions, the security of our scheme is independent of the number of user secret key queries and that of challenge ciphertext queries. We prove the tight security of our scheme based on the Matrix Decisional Diffie-Hellman Assumption, which is an abstraction of standard and simple decisional Diffie-Hellman assumptions, such as the k -Linear and SXDH assumptions. Finally, we also extend our ideas to achieve tight chosen-ciphertext security and anonymity, respectively. These security notions for HIBE have not been tightly achieved in the multi-challenge setting before.
2020
PKC
Lossy CSI-FiSh: Efficient Signature Scheme with Tight Reduction to Decisional CSIDH-512 📺
Recently, Beullens, Kleinjung, and Vercauteren (Asiacrypt’19) provided the first practical isogeny-based digital signature, obtained from the Fiat-Shamir (FS) paradigm. They worked with the CSIDH-512 parameters and passed through a new record class group computation. However, as with all standard FS signatures, the security proof is highly non-tight and the concrete parameters are set under the heuristic that the only way to attack the scheme is by finding collisions for a hash function. In this paper, we propose an FS-style signature scheme, called Lossy CSI-FiSh, constructed using the CSIDH-512 parameters and with a security proof based on the “Lossy Keys” technique introduced by Kiltz, Lyubashevsky and Schaffner (Eurocrypt’18). Lossy CSI-FiSh is provably secure under the same assumption which underlies the security of the key exchange protocol CSIDH (Castryck et al. (Asiacrypt’18)) and is almost as efficient as CSI-FiSh. For instance, aiming for small signature size, our scheme is expected to take around $$approx 800$$  ms to sign/verify while producing signatures of size $$approx 280$$ bytes. This is only twice slower than CSI-FiSh while having similar signature size for the same parameter set. As an additional benefit, our scheme is by construction secure both in the classical and quantum random oracle model.
2020
PKC
Threshold Schemes from Isogeny Assumptions 📺
We initiate the study of threshold schemes based on the Hard Homogeneous Spaces (HHS) framework of Couveignes. Quantum-resistant HHS based on supersingular isogeny graphs have recently become usable thanks to the record class group precomputation performed for the signature scheme CSI-FiSh. Using the HHS equivalent of the technique of Shamir’s secret sharing in the exponents , we adapt isogeny based schemes to the threshold setting. In particular we present threshold versions of the CSIDH public key encryption, and the CSI-FiSh signature schemes. The main highlight is a threshold version of CSI-FiSh which runs almost as fast as the original scheme, for message sizes as low as 1880 B, public key sizes as low as 128 B, and thresholds up to 56; other speed-size-threshold compromises are possible.
2020
PKC
The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 📺
We consider the problem of removing subexponential reductions to indistinguishability obfuscation (iO) in the context of obfuscating probabilistic programs. Specifically, we show how to apply complexity absorption (Zhandry Crypto 2016) to the recent notion of probabilistic indistinguishability obfuscation (piO, Canetti et al. TCC 2015). As a result, we obtain a variant of piO which allows to obfuscate a large class of probabilistic programs, from polynomially secure indistinguishability obfuscation and extremely lossy functions. Particularly, our piO variant is able to obfuscate circuits with specific input domains regardless of the performed computation. We then revisit several (direct or indirect) applications of piO, and obtain – a fully homomorphic encryption scheme (without circular security assumptions), – a multi-key fully homomorphic encryption scheme with threshold decryption, – an encryption scheme secure under arbitrary key-dependent messages, – a spooky encryption scheme for all circuits, – a function secret sharing scheme with additive reconstruction for all circuits, all from polynomially secure iO, extremely lossy functions, and, depending on the scheme, also other (but polynomial and comparatively mild) assumptions. All of these assumptions are implied by polynomially secure iO and the (non-polynomial, but very well-investigated) exponential DDH assumption. Previously, all the above applications required to assume the subexponential security of iO (and more standard assumptions).
2020
PKC
Topology-Hiding Computation for Networks with Unknown Delays 📺
Topology-Hiding Computation (THC) allows a set of parties to securely compute a function over an incomplete network without revealing information on the network topology. Since its introduction in TCC’15 by Moran et al., the research on THC has focused on reducing the communication complexity, allowing larger graph classes, and tolerating stronger corruption types. All of these results consider a fully synchronous model with a known upper bound on the maximal delay of all communication channels. Unfortunately, in any realistic setting this bound has to be extremely large, which makes all fully synchronous protocols inefficient. In the literature on multi-party computation, this is solved by considering the fully asynchronous model. However, THC is unachievable in this model (and even hard to define), leaving even the definition of a meaningful model as an open problem. The contributions of this paper are threefold. First, we introduce a meaningful model of unknown and random communication delays for which THC is both definable and achievable. The probability distributions of the delays can be arbitrary for each channel, but one needs to make the (necessary) assumption that the delays are independent. The existing fully-synchronous THC protocols do not work in this setting and would, in particular, leak information about the topology. Second, in the model with trusted stateless hardware boxes introduced at Eurocrypt’18 by Ball et al., we present a THC protocol that works for any graph class. Third, we explore what is achievable in the standard model without trusted hardware and present a THC protocol for specific graph types (cycles and trees) secure under the DDH assumption. The speed of all protocols scales with the actual (unknown) delay times, in contrast to all previously known THC protocols whose speed is determined by the assumed upper bound on the network delay.
2020
PKC
Witness Maps and Applications 📺
We introduce the notion of Witness Maps as a cryptographic notion of a proof system. A Unique Witness Map (UWM) deterministically maps all witnesses for an $$mathbf {NP}$$ statement to a single representative witness, resulting in a computationally sound, deterministic-prover, non-interactive witness independent proof system. A relaxation of UWM, called Compact Witness Map (CWM), maps all the witnesses to a small number of witnesses, resulting in a “lossy” deterministic-prover, non-interactive proof-system. We also define a Dual Mode Witness Map (DMWM) which adds an “extractable” mode to a CWM. Our main construction is a DMWM for all $$mathbf {NP}$$ relations, assuming sub-exponentially secure indistinguishability obfuscation ( $${imathcal {O}}$$ ), along with standard cryptographic assumptions. The DMWM construction relies on a CWM and a new primitive called Cumulative All-Lossy-But-One Trapdoor Functions (C-ALBO-TDF), both of which are in turn instantiated based on $${imathcal {O}}$$ and other primitives. Our instantiation of a CWM is in fact a UWM; in turn, we show that a UWM implies Witness Encryption. Along the way to constructing UWM and C-ALBO-TDF, we also construct, from standard assumptions, Puncturable Digital Signatures and a new primitive called Cumulative Lossy Trapdoor Functions (C-LTDF). The former improves up on a construction of Bellare et al. (Eurocrypt 2016), who relied on sub-exponentially secure $${imathcal {O}}$$ and sub-exponentially secure OWF. As an application of our constructions, we show how to use a DMWM to construct the first leakage and tamper-resilient signatures with a deterministic signer , thereby solving a decade old open problem posed by Katz and Vaikunthanathan (Asiacrypt 2009), by Boyle, Segev and Wichs (Eurocrypt 2011), as well as by Faonio and Venturi (Asiacrypt 2016). Our construction achieves the optimal leakage rate of $$1 - o(1)$$ .
2020
PKC
Sublinear-Round Byzantine Agreement Under Corrupt Majority 📺
Although Byzantine Agreement (BA) has been studied for three decades, perhaps somewhat surprisingly, there still exist significant gaps in our understanding regarding its round complexity. A long-standing open question is the following: can we achieve BA with sublinear round complexity under corrupt majority? Due to the beautiful works by Garay et al. (FOCS’07) and Fitzi and Nielsen (DISC’09), we have partial and affirmative answers to this question albeit for the narrow regime $$f = n/2 + o(n)$$ where f is the number of corrupt nodes and n is the total number of nodes. So far, no positive result is known about the setting $$f > 0.51n$$ even for static corruption! In this paper, we make progress along this somewhat stagnant front. We show that there exists a corrupt-majority BA protocol that terminates in $$O(frac{1}{epsilon } log frac{1}{delta })$$ rounds in the worst case, satisfies consistency with probability at least $$1 - delta $$ , and tolerates $$(1-epsilon )$$ fraction of corrupt nodes. Our protocol secures against an adversary that can corrupt nodes adaptively during the protocol execution but cannot perform “after-the-fact” removal of honest messages that have already been sent prior to corruption. Our upper bound is optimal up to a logarithmic factor in light of the elegant $$varOmega (1/epsilon )$$ lower bound by Garay et al. (FOCS’07).
2020
PKC
Memory-Tight Reductions for Practical Key Encapsulation Mechanisms 📺
The efficiency of a black-box reduction is an important goal of modern cryptography. Traditionally, the time complexity and the success probability were considered as the main aspects of efficiency measurements. In CRYPTO 2017, Auerbach et al. introduced the notion of memory-tightness in cryptographic reductions and showed a memory-tight reduction of the existential unforgeability of the RSA-FDH signature scheme. Unfortunately, their techniques do not extend directly to the reductions involving intricate RO-programming. The problem seems to be inherent as all the other existing results on memory-tightness are lower bounds and impossibility results. In fact, Auerbach et al. conjectured that a memory-tight reduction for security of Hashed-ElGamal KEM is impossible. We refute the above conjecture. Using a simple RO simulation technique, we provide memory-tight reductions of security of the Cramer-Shoup and the ECIES version of Hashed-ElGamal KEM. We prove memory-tight reductions for different variants of Fujisaki-Okamoto Transformation. We analyze the modular transformations introduced by Hofheinz, Hövermanns and Kiltz (TCC 2017). In addition to the constructions involving implicit rejection, we present a memory-tight reduction for the security of the transformation $$mathsf{ ext {QFO}_m^perp }$$ . Our techniques can withstand correctness-errors, and applicable to several lattice-based KEM candidates.
2020
PKC
Bandwidth-Efficient Threshold EC-DSA 📺
Threshold Signatures allow n parties to share the power of issuing digital signatures so that any coalition of size at least $$t+1$$ can sign, whereas groups of t or less players cannot. Over the last few years many schemes addressed the question of realizing efficient threshold variants for the specific case of EC-DSA signatures. In this paper we present new solutions to the problem that aim at reducing the overall bandwidth consumption. Our main contribution is a new variant of the Gennaro and Goldfeder protocol from ACM CCS 2018 that avoids all the required range proofs, while retaining provable security against malicious adversaries in the dishonest majority setting. Our experiments show that – for all levels of security – our signing protocol reduces the bandwidth consumption of best previously known secure protocols for factors varying between 4.4 and 9, while key generation is consistently two times less expensive. Furthermore compared to these same protocols, our signature generation is faster for 192-bits of security and beyond.
2020
PKC
Toward RSA-OAEP Without Random Oracles 📺
We show new partial and full instantiation results under chosen-ciphertext security for the widely implemented and standardized RSA-OAEP encryption scheme of Bellare and Rogaway (EUROCRYPT 1994) and two variants. Prior work on such instantiations either showed negative results or settled for “passive” security notions like IND-CPA. More precisely, recall that RSA-OAEP adds redundancy and randomness to a message before composing two rounds of an underlying Feistel transform, whose round functions are modeled as random oracles (ROs), with RSA. Our main results are: Either of the two oracles (while still modeling the other as a RO) can be instantiated in RSA-OAEP under IND-CCA2 using mild standard-model assumptions on the round functions and generalizations of algebraic properties of RSA shown by Barthe, Pointcheval, and Báguelin (CCS 2012). The algebraic properties are only shown to hold at practical parameters for small encryption exponent ( $$e=3$$ ), but we argue they have value for larger e as well. Both oracles can be instantiated simultaneously for two variants of RSA-OAEP, called “ t -clear” and “ s -clear” RSA-OAEP. For this we use extractability-style assumptions in the sense of Canetti and Dakdouk (TCC 2010) on the round functions, as well as novel yet plausible “XOR-type” assumptions on RSA. While admittedly strong, such assumptions may nevertheless be necessary at this point to make positive progress. In particular, our full instantiations evade impossibility results of Shoup (J. Cryptology 2002), Kiltz and Pietrzak (EUROCRYPT 2009), and Bitansky et al. (STOC 2014). Moreover, our results for s -clear RSA-OAEP yield the most efficient RSA-based encryption scheme proven IND-CCA2 in the standard model (using bold assumptions on cryptographic hashing) to date.
2020
PKC
Blazing Fast OT for Three-Round UC OT Extension 📺
Oblivious Transfer (OT) is an important building block for multi-party computation (MPC). Since OT requires expensive public-key operations, efficiency-conscious MPC protocols use an OT extension (OTE) mechanism [Beaver 96, Ishai et al. 03] to provide the functionality of many independent OT instances with the same sender and receiver, using only symmetric-key operations plus few instances of some base OT protocol. Consequently there is significant interest in constructing OTE friendly protocols, namely protocols that, when used as base-OT for OTE, result in extended OT that are both round-efficient and cost-efficient. We present the most efficient OTE-friendly protocol to date. Specifically: Our base protocol incurs only 3 exponentiations per instance. Our base protocol results in a 3 round extended OT protocol. The extended protocol is UC secure in the Observable Random Oracle Model (ROM) under the CDH assumption. For comparison, the state of the art for base OTs that result in 3-round OTE are proven only in the programmable ROM, and require 4 exponentiations under Interactive DDH or 6 exponentiations under DDH [Masney-Rindal 19]. We also implement our protocol and benchmark it against the Simplest OT protocol [Chou and Orlandi, Latincrypt 2015], which is the most efficient and widely used OT protocol but not known to suffice for OTE. The computation cost is roughly the same in both cases. Interestingly, our base OT is also 3 rounds. However, we slightly modify the extension mechanism (which normally adds a round) so as to preserve the number of rounds in our case.
2020
PKC
Fast, Compact, and Expressive Attribute-Based Encryption 📺
Attribute-based encryption (ABE) is an advanced cryptographic tool and useful to build various types of access control systems. Toward the goal of making ABE more practical, we propose key-policy (KP) and ciphertext-policy (CP) ABE schemes, which first support unbounded sizes of attribute sets and policies with negation and multi-use of attributes, allow fast decryption, and are adaptively secure under a standard assumption, simultaneously. Our schemes are more expressive than previous schemes and efficient enough. To achieve the adaptive security along with the other properties, we refine the technique introduced by Kowalczyk and Wee (Eurocrypt’19) so that we can apply the technique more expressive ABE schemes. Furthermore, we also present a new proof technique that allows us to remove redundant elements used in their ABE schemes. We implement our schemes in 128-bit security level and present their benchmarks for an ordinary personal computer and smartphones. They show that all algorithms run in one second with the personal computer when they handle any policy or attribute set with one hundred attributes.
2020
PKC
The Randomized Slicer for CVPP: Sharper, Faster, Smaller, Batchier 📺
Following the recent line of work on solving the closest vector problem with preprocessing (CVPP) using approximate Voronoi cells, we improve upon previous results in the following ways: We derive sharp asymptotic bounds on the success probability of the randomized slicer, by modelling the behaviour of the algorithm as a random walk on the coset of the lattice of the target vector. We thereby solve the open question left by Doulgerakis–Laarhoven–De Weger [PQCrypto 2019] and Laarhoven [MathCrypt 2019]. We obtain better trade-offs for CVPP and its generalisations (strictly, in certain regimes), both with and without nearest neighbour searching, as a direct result of the above sharp bounds on the success probabilities. We show how to reduce the memory requirement of the slicer, and in particular the corresponding nearest neighbour data structures, using ideas similar to those proposed by Becker–Gama–Joux [Cryptology ePrint Archive, 2015]. Using $$2^{0.185d + o(d)}$$ memory, we can solve a single CVPP instance in $$2^{0.264d + o(d)}$$ time. We further improve on the per-instance time complexities in certain memory regimes, when we are given a sufficiently large batch of CVPP problem instances for the same lattice. Using $$2^{0.208d + o(d)}$$ memory, we can heuristically solve CVPP instances in $$2^{0.234d + o(d)}$$ amortized time, for batches of size at least $$2^{0.058d + o(d)}$$ . Our random walk model for analysing arbitrary-step transition probabilities in complex step-wise algorithms may be of independent interest, both for deriving analytic bounds through convexity arguments, and for computing optimal paths numerically with a shortest path algorithm. As a side result we apply the same random walk model to graph-based nearest neighbour searching, where we improve upon results of Laarhoven [SOCG 2018] by deriving sharp bounds on the success probability of the corresponding greedy search procedure.
2020
PKC
Public-Key Puncturable Encryption: Modular and Compact Constructions 📺
We revisit the method of designing public-key puncturable encryption schemes and present a generic conversion by leveraging the techniques of distributed key-distribution and revocable encryption. In particular, we first introduce a refined version of identity-based revocable encryption, named key-homomorphic identity-based revocable key encapsulation mechanism with extended correctness . Then, we propose a generic construction of puncturable key encapsulation mechanism from the former by merging the idea of distributed key-distribution. Compared to the state-of-the-art, our generic construction supports unbounded number of punctures and multiple tags per message, thus achieving more fine-grained revocation of decryption capability. Further, it does not rely on random oracles , not suffer from non-negligible correctness error, and results in a variety of efficient schemes with distinct features. More precisely, we obtain the first scheme with very compact ciphertexts in the standard model, and the first scheme with support for both unbounded size of tags per ciphertext and unbounded punctures as well as constant-time puncture operation. Moreover, we get a comparable scheme proven secure under the standard DBDH assumption, which enjoys both faster encryption and decryption than previous works based on the same assumption, especially when the number of tags associated with the ciphertext is large.
2020
PKC
Going Beyond Dual Execution: MPC for Functions with Efficient Verification 📺
The dual execution paradigm of Mohassel and Franklin (PKC’06) and Huang, Katz and Evans (IEEE ’12) shows how to achieve the notion of 1-bit leakage security at roughly twice the cost of semi-honest security for the special case of two-party secure computation . To date, there are no multi-party computation (MPC) protocols that offer such a strong trade-off between security and semi-honest performance. Our main result is to address this shortcoming by designing 1-bit leakage protocols for the multi-party setting, albeit for a special class of functions. We say that function f ( x ,  y ) is efficiently verifiable by g if the running time of g is always smaller than f and $$g(x,y,z)=1$$ if and only if $$f(x,y)=z$$ . In the two-party setting, we first improve dual execution by observing that the “second execution” can be an evaluation of g instead of f , and that by definition, the evaluation of g is asymptotically more efficient. Our main MPC result is to construct a 1-bit leakage protocol for such functions from any passive protocol for f that is secure up to additive errors and any active protocol for g . An important result by Genkin et al. (STOC ’14) shows how the classic protocols by Goldreich et al. (STOC ’87) and Ben-Or et al. (STOC ’88) naturally support this property, which allows to instantiate our compiler with two-party and multi-party protocols. A key technical result we prove is that the passive protocol for distributed garbling due to Beaver et al. (STOC ’90) is in fact secure up to additive errors against malicious adversaries, thereby, yielding another powerful instantiation of our paradigm in the constant-round multi-party setting. As another concrete example of instantiating our approach, we present a novel protocol for computing perfect matching that is secure in the 1-bit leakage model and whose communication complexity is less than the honest-but-curious implementations of textbook algorithms for perfect matching.
2020
PKC
Adaptive Simulation Security for Inner Product Functional Encryption 📺
Inner product functional encryption ( $${mathsf {IPFE}}$$ ) [ 1 ] is a popular primitive which enables inner product computations on encrypted data. In $${mathsf {IPFE}}$$ , the ciphertext is associated with a vector $$varvec{x}$$ , the secret key is associated with a vector $$varvec{y}$$ and decryption reveals the inner product $$langle varvec{x},varvec{y} angle $$ . Previously, it was known how to achieve adaptive indistinguishability ( $$mathsf {IND}$$ ) based security for $${mathsf {IPFE}}$$ from the $$mathsf {DDH}$$ , $$mathsf {DCR}$$ and $$mathsf {LWE}$$ assumptions [ 8 ]. However, in the stronger simulation ( $$mathsf {SIM}$$ ) based security game, it was only known how to support a restricted adversary that makes all its key requests either before or after seeing the challenge ciphertext, but not both. In more detail, Wee [ 46 ] showed that the $$mathsf {DDH}$$ -based scheme of Agrawal et al. (Crypto 2016) achieves semi-adaptive simulation-based security, where the adversary must make all its key requests after seeing the challenge ciphertext. On the other hand, O’Neill showed that all $$mathsf {IND}$$ -secure $${mathsf {IPFE}}$$ schemes (which may be based on $$mathsf {DDH}$$ , $$mathsf {DCR}$$ and $$mathsf {LWE}$$ ) satisfy $$mathsf {SIM}$$ based security in the restricted model where the adversary makes all its key requests before seeing the challenge ciphertext. In this work, we resolve the question of $$mathsf {SIM}$$ -based security for $${mathsf {IPFE}}$$ by showing that variants of the $${mathsf {IPFE}}$$ constructions by Agrawal et al. , based on $$mathsf {DDH}$$ , Paillier and $$mathsf {LWE}$$ , satisfy the strongest possible adaptive $$mathsf {SIM}$$ -based security where the adversary can make an unbounded number of key requests both before and after seeing the (single) challenge ciphertext. This establishes optimal security of the $${mathsf {IPFE}}$$ schemes, under all hardness assumptions on which it can (presently) be based.
2020
PKC
Flexible Authenticated and Confidential Channel Establishment (fACCE): Analyzing the Noise Protocol Framework 📺
The Noise protocol framework is a suite of channel establishment protocols, of which each individual protocol ensures various security properties of the transmitted messages, but keeps specification, implementation, and configuration relatively simple. Implementations of the Noise protocols are themselves, due to the employed primitives, very performant. Thus, despite its relative youth, Noise is already used by large-scale deployed applications such as WhatsApp and Slack. Though the Noise specification describes and claims the security properties of the protocol patterns very precisely, there has been no computational proof yet. We close this gap. Noise uses only a limited number of cryptographic primitives which makes it an ideal candidate for reduction-based security proofs. Due to its patterns’ characteristics as channel establishment protocols, and the usage of established keys within the handshake, the authenticated and confidential channel establishment (ACCE) model (Jager et al. CRYPTO 2012) seems to perfectly fit for an analysis of Noise. However, the ACCE model strictly divides protocols into two non-overlapping phases: the pre-accept phase (i.e., the channel establishment) and post-accept phase (i.e., the channel). In contrast, Noise allows the transmission of encrypted messages as soon as any key is established (for instance, before authentication between parties has taken place), and then incrementally increases the channel’s security guarantees. By proposing a generalization of the original ACCE model, we capture security properties of such staged channel establishment protocols flexibly – comparably to the multi-stage key exchange model (Fischlin and Günther CCS 2014). We give security proofs for eight of the 15 basic Noise patterns in the full version (EPRINT 2019/436) and exemplify them by the proof of the  XK pattern in this article.
2020
PKC
Mon$\mathbb {Z}_{2^{k}}$a: Fast Maliciously Secure Two Party Computation on $\mathbb {Z}_{2^{k}}$ 📺
In this paper we present a new 2-party protocol for secure computation over rings of the form $$mathbb {Z}_{2^k}$$ . As many recent efficient MPC protocols supporting dishonest majority, our protocol consists of a heavier (input-independent) pre-processing phase and a very efficient online stage. Our offline phase is similar to BeDOZa (Bendlin et al. Eurocrypt 2011) but employs Joye-Libert (JL, Eurocrypt 2013) as underlying homomorphic cryptosystem and, notably, it can be proven secure without resorting to the expensive sacrifice step. JL turns out to be particularly well suited for the ring setting as it naturally supports $$mathbb {Z}_{2^k}$$ as underlying message space. Moreover, it enjoys several additional properties (such as valid ciphertext-verifiability and efficiency) that make it a very good fit for MPC in general. As a main technical contribution we show how to take advantage of all these properties (and of more properties that we introduce in this work, such as a ZK proof of correct multiplication) in order to design a two-party protocol that is efficient, fast and easy to implement in practice. Our solution is particularly well suited for relatively large choices of k ( e.g. $$k=128$$ ), but compares favorably with the state of the art solution of SPD $$mathbb {Z}_{2^k}$$ (Cramer et al. Crypto 2018) already for the practically very relevant case of $$mathbb {Z}_{2^{64}}$$ .
2020
PKC
Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices: KEMs and Signatures of Smaller Sizes 📺
Currently, lattice-based cryptosystems are less efficient than their number-theoretic counterparts (based on RSA, discrete logarithm, etc.) in terms of key and ciphertext (signature) sizes. For adequate security the former typically needs thousands of bytes while in contrast the latter only requires at most hundreds of bytes. This significant difference has become one of the main concerns in replacing currently deployed public-key cryptosystems with lattice-based ones. Observing the inherent asymmetries in existing lattice-based cryptosystems, we propose asymmetric variants of the (module-)LWE and (module-)SIS assumptions, which yield further size-optimized KEM and signature schemes than those from standard counterparts. Following the framework of Lindner and Peikert (CT-RSA 2011) and the Crystals-Kyber proposal (EuroS&P 2018), we propose an IND-CCA secure KEM scheme from the hardness of the asymmetric module-LWE (AMLWE), whose asymmetry is fully exploited to obtain shorter public keys and ciphertexts. To target at a 128-bit quantum security, the public key (resp., ciphertext) of our KEM only has 896 bytes (resp., 992 bytes). Our signature scheme bears most resemblance to and improves upon the Crystals-Dilithium scheme (ToCHES 2018). By making full use of the underlying asymmetric module-LWE and module-SIS assumptions and carefully selecting the parameters, we construct an SUF-CMA secure signature scheme with shorter public keys and signatures. For a 128-bit quantum security, the public key (resp., signature) of our signature scheme only has 1312 bytes (resp., 2445 bytes). We adapt the best known attacks and their variants to our AMLWE and AMSIS problems and conduct a comprehensive and thorough analysis of several parameter choices (aiming at different security strengths) and their impacts on the sizes, security and error probability of lattice-based cryptosystems. Our analysis demonstrates that AMLWE and AMSIS problems admit more flexible and size-efficient choices of parameters than the respective standard versions.
2020
PKC
Limits on the Efficiency of (Ring) LWE Based Non-interactive Key Exchange 📺
$$mathsf {LWE}$$ based key-exchange protocols lie at the heart of post-quantum public-key cryptography. However, all existing protocols either lack the non-interactive nature of Diffie-Hellman key-exchange or polynomial $$mathsf {LWE}$$ -modulus, resulting in unwanted efficiency overhead. We study the possibility of designing non-interactive $$mathsf {LWE}$$ -based protocols with polynomial $$mathsf {LWE}$$ -modulus. To this end, We identify and formalize simple non-interactive and polynomial $$mathsf {LWE}$$ -modulus variants of existing protocols, where Alice and Bob simultaneously exchange one or more (ring) $$mathsf {LWE}$$ samples with polynomial $$mathsf {LWE}$$ -modulus and then run individual key reconciliation functions to obtain the shared key. We point out central barriers and show that such non-interactive key-exchange protocols are impossible if: (1) the reconciliation functions first compute the inner product of the received $$mathsf {LWE}$$ sample with their private $$mathsf {LWE}$$ secret. This impossibility is information theoretic. (2) One of the reconciliation functions does not depend on the error of the transmitted $$mathsf {LWE}$$ sample. This impossibility assumes hardness of $$mathsf {LWE}$$ . We give further evidence that progress in either direction, of giving an $$mathsf {LWE}$$ -based $$mathrm {NIKE}$$ protocol or proving impossibility of one will lead to progress on some other well-studied questions in cryptography. Overall, our results show possibilities and challenges in designing simple (ring) $$mathsf {LWE}$$ -based non-interactive key exchange protocols.
2020
PKC
Generic Authenticated Key Exchange in the Quantum Random Oracle Model 📺
We propose $$mathsf {FO_mathsf {AKE}}$$ , a generic construction of two-message authenticated key exchange (AKE) from any passively secure public key encryption (PKE) in the quantum random oracle model (QROM). Whereas previous AKE constructions relied on a Diffie-Hellman key exchange or required the underlying PKE scheme to be perfectly correct, our transformation allows arbitrary PKE schemes with non-perfect correctness. Dealing with imperfect schemes is one of the major difficulties in a setting involving active attacks. Our direct construction, when applied to schemes such as the submissions to the recent NIST post-quantum competition, is more natural than previous AKE transformations. Furthermore, we avoid the use of (quantum-secure) digital signature schemes which are considerably less efficient than their PKE counterparts. As a consequence, we can instantiate our AKE transformation with any of the submissions to the recent NIST competition, e.g., ones based on codes and lattices. $$mathsf {FO_mathsf {AKE}}$$ can be seen as a generalisation of the well known Fujisaki-Okamoto transformation (for building actively secure PKE from passively secure PKE) to the AKE setting. As a helper result, we also provide a security proof for the Fujisaki-Okamoto transformation in the QROM for PKE with non-perfect correctness which is tighter and tolerates a larger correctness error than previous proofs.
2020
PKC
PAKEs: New Framework, New Techniques and More Efficient Lattice-Based Constructions in the Standard Model 📺
Password-based authenticated key exchange (PAKE) allows two parties with a shared password to agree on a session key. In the last decade, the design of PAKE protocols from lattice assumptions has attracted lots of attention. However, existing solutions in the standard model do not have appealing efficiency. In this work, we first introduce a new PAKE framework. We then provide two realizations in the standard model, under the Learning With Errors (LWE) and Ring-LWE assumptions, respectively. Our protocols are much more efficient than previous proposals, thanks to three novel technical ingredients that may be of independent interests. The first ingredient consists of two approximate smooth projective hash (ASPH) functions from LWE, as well as two ASPHs from Ring-LWE. The latter are the first ring-based constructions in the literature, one of which only has a quasi-linear runtime while its function value contains $$varTheta (n)$$ field elements (where n is the degree of the polynomial defining the ring). The second ingredient is a new key conciliation scheme that is approximately rate-optimal and that leads to a very efficient key derivation for PAKE protocols. The third one is a new authentication code that allows to verify a MAC with a noisy key.
2020
PKC
Threshold Ring Signatures: New Definitions and Post-quantum Security 📺
A t -out-of- N threshold ring signature allows t parties to jointly and anonymously compute a signature on behalf on N public keys, selected in an arbitrary manner among the set of all public keys registered in the system. Existing definitions for t -out-of- N threshold ring signatures guarantee security only when the public keys are honestly generated, and many even restrict the ability of the adversary to actively participate in the computation of the signatures. Such definitions do not capture the open settings envisioned for threshold ring signatures, where parties can independently add themselves to the system, and join other parties for the computation of the signature. Furthermore, known constructions of threshold ring signatures are not provably secure in the post-quantum setting, either because they are based on non-post quantum secure problems (e.g. Discrete Log, RSA), or because they rely on transformations such as Fiat-Shamir, that are not always secure in the quantum random oracle model (QROM). In this paper, we provide the first definition of t -out-of- N threshold ring signatures against active adversaries who can participate in the system and arbitrarily deviate from the prescribed procedures. Second, we present a post-quantum secure realization based on any (post-quantum secure) trapdoor commitment, which we prove secure in the QROM. Our construction is black-box and it can be instantiated with any trapdoor commitment, thus allowing the use of a variety of hardness assumptions.
2020
PKC
Constraining and Watermarking PRFs from Milder Assumptions 📺
Constrained pseudorandom functions (C-PRFs) let the possessor of a secret key delegate the ability to evaluate the function on certain authorized inputs, while keeping the remaining function values pseudorandom. A constraint-hiding constrained PRF (CHC-PRF) additionally conceals the predicate that determines which inputs are authorized. These primitives have a wealth of applications, including watermarking schemes, symmetric deniable encryption, and updatable garbled circuits. Recent works have constructed (CH)C-PRFs from rather aggressive parameterizations of Learning With Errors (LWE) with subexponential modulus-noise ratios, even for relatively simple “puncturing” or $$ ext {NC}^{1}$$ circuit constraints. This corresponds to strong lattice assumptions and inefficient constructions, and stands in contrast to LWE-based unconstrained PRFs and fully homomorphic encryption schemes, which can be based on quasi-polynomial or even (nearly) polynomial modulus-noise ratios. In this work we considerably improve the LWE assumptions needed for building (constraint-hiding) constrained PRFs and watermarking schemes. In particular, for CHC-PRFs and related watermarking schemes we improve the modulus-noise ratio to $$lambda ^{O((d+log lambda ) log lambda )}$$ for depth- d circuit constraints, which is merely quasi-polynomial for $$ ext {NC}^{1}$$ circuits and closely related watermarking schemes. For (constraint-revealing) C-PRFs for $$ ext {NC}^{1}$$ we do even better, obtaining a nearly polynomial $$lambda ^{omega (1)}$$ ratio. These improvements are partly enabled by slightly modifying the definition of C-PRFs, in a way that is still compatible with many of their applications. Finally, as a contribution of independent interest we build CHC-PRFs for special constraint classes from generic , weaker assumptions: we obtain bit-fixing constraints based on the minimal assumption of one-way functions, and hyperplane-membership constraints based on key-homomorphic PRFs.
2020
PKC
Tight and Optimal Reductions for Signatures Based on Average Trapdoor Preimage Sampleable Functions and Applications to Code-Based Signatures 📺
The GPV construction [ GPV08 ] presents a generic construction of signature schemes in the Hash and Sign paradigm and is used in some lattice based signatures. This construction requires a family $$mathcal {F}$$ of trapdoor preimage sampleable functions (TPSF). In this work we extend this notion to the weaker Average TPSF (ATPSF) and show that the GPV construction also holds for ATPSF in the Random Oracle Model (ROM). We also introduce the problem of finding a Claw with a random function (Claw(RF)) and present a tight security reduction to the Claw(RF) problem. Our reduction is also optimal meaning that an algorithm that solves the Claw(RF) problem breaks the scheme. We extend these results to the quantum setting and prove this same tight and optimal reduction in the QROM. Finally, we apply these results to code-based signatures, notably the Wave signature scheme and prove security for it in the ROM and the QROM, improving and extending the original analysis of [ DST19a ].
2020
PKC
Bringing Order to Chaos: The Case of Collision-Resistant Chameleon-Hashes 📺
Chameleon-hash functions, introduced by Krawczyk and Rabin at NDSS 2000, are trapdoor collision-resistant hash-functions parametrized by a public key. If the corresponding secret key is known, arbitrary collisions for the hash function can be efficiently found. Chameleon-hash functions have prominent applications in the design of cryptographic primitives, such as lifting non-adaptively secure signatures to adaptively secure ones. Recently, this primitive also received a lot of attention as a building block in more complex cryptographic applications ranging from editable blockchains to advanced signature and encryption schemes. We observe that in latter applications various different notions of collision-resistance are used, and it is not always clear if the respective notion does really cover what seems intuitively required by the application. Therefore, we revisit existing collision-resistance notions in the literature, study their relations, and—using the example of the recent redactable blockchain proposals—discuss which practical impact different notions of collision-resistance might have. Moreover, we provide a stronger, and arguably more desirable, notion of collision-resistance than what is known from the literature. Finally, we present a surprisingly simple and efficient black-box construction of chameleon-hash functions achieving this strong notion.
2020
PKC
Faster Cofactorization with ECM Using Mixed Representations 📺
This paper introduces a novel implementation of the elliptic curve factoring method specifically designed for medium-size integers such as those arising by billions in the cofactorization step of the Number Field Sieve. In this context, our algorithm requires fewer modular multiplications than any other publicly available implementation. The main ingredients are: the use of batches of primes, fast point tripling, optimal double-base decompositions and Lucas chains, and a good mix of Edwards and Montgomery representations.
2020
PKC
Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits and Their Application to Lattice-Based Cryptography 📺
In this work we present a new interactive Zero-Knowledge Argument of knowledge for general arithmetic circuits. Our protocol is based on the “MPC-in-the-head”-paradigm of Ishai et al. (STOC 2009) and follows the recent “MPC-in-the-head with Preprocessing” as proposed by Katz, Kolesnikov and Wang (ACM CCS 2018). However, in contrast to Katz et al. who used the “cut-and-choose” approach for pre-processing, we show how to incorporate the well-known “sacrificing” paradigm into “MPC-in-the-head”, which reduces the proof size when working over arithmetic circuits. Our argument system uses only lightweight symmetric-key primitives and utilizes a simplified version of the so-called SPDZ-protocol. Based on specific properties of our protocol we then show how it can be used to construct an efficient Zero-Knowledge Argument of Knowledge for instances of the Short Integer Solution (SIS) problem. We present different protocols that are tailored to specific uses of SIS, while utilizing the advantages of our scheme. In particular, we present a variant of our argument system that allows the parties to sample the circuit “on the fly”, which may be of independent interest. We furthermore implemented our Zero-Knowledge argument for SIS and show that using our protocols it is possible to run a complete interactive proof, even for general SIS instances which result in a circuit with $${>}10^6$$ gates, in less than 0.5 s .
2020
PKC
Improved Classical Cryptanalysis of SIKE in Practice 📺
The main contribution of this work is an optimized implementation of the van Oorschot-Wiener (vOW) parallel collision finding algorithm. As is typical for cryptanalysis against conjectured hard problems (e. g. factoring or discrete logarithms), challenges can arise in the implementation that are not captured in the theory, making the performance of the algorithm in practice a crucial element of estimating security. We present a number of novel improvements, both to generic instantiations of the vOW algorithm finding collisions in arbitrary functions, and to its instantiation in the context of the supersingular isogeny key encapsulation (SIKE) protocol, that culminate in an improved classical cryptanalysis of the computational supersingular isogeny (CSSI) problem. In particular, we present a scalable implementation that can be applied to the Round-2 parameter sets of SIKE that can be used to give confidence in their security levels.
2020
PKC
Updateable Inner Product Argument with Logarithmic Verifier and Applications 📺
We propose an improvement for the inner product argument of Bootle et al. (EUROCRYPT’16). The new argument replaces the unstructured common reference string (the commitment key) by a structured one. We give two instantiations of this argument, for two different distributions of the CRS. In the designated verifier setting, this structure can be used to reduce verification from linear to logarithmic in the circuit size. The argument can be compiled to the publicly verifiable setting in asymmetric bilinear groups. The new common reference string can easily be updateable. The argument can be directly used to improve verification of Bulletproofs range proofs (IEEE SP’18). On the other hand, to use the improved argument to prove circuit satisfiability with logarithmic verification, we adapt recent techniques from Sonic (ACM CCS’19) to work with the new common reference string. The resulting argument is secure under standard assumptions (in the Random Oracle Model), in contrast with Sonic and recent works that improve its efficiency (Plonk, Marlin, AuroraLight), which, apart from the Random Oracle Model, need either the Algebraic Group Model or Knowledge Type assumptions.
2020
PKC
A Short-List of Pairing-Friendly Curves Resistant to Special TNFS at the 128-Bit Security Level 📺
There have been notable improvements in discrete logarithm computations in finite fields since 2015 and the introduction of the Tower Number Field Sieve algorithm (TNFS) for extension fields. The Special TNFS is very efficient in finite fields that are target groups of pairings on elliptic curves, where the characteristic is special (e.g. sparse). The key sizes for pairings should be increased, and alternative pairing-friendly curves can be considered. We revisit the Special variant of TNFS for pairing-friendly curves. In this case the characteristic is given by a polynomial of moderate degree (between 4 and 38) and tiny coefficients, evaluated at an integer (a seed). We present a polynomial selection with a new practical trade-off between degree and coefficient size. As a consequence, the security of curves computed by Barbulescu, El Mrabet and Ghammam in 2019 should be revised: we obtain a smaller estimated cost of STNFS for all curves except BLS12 and BN. To obtain TNFS-secure curves, we reconsider the Brezing–Weng generic construction of families of pairing-friendly curves and estimate the cost of our new Special TNFS algorithm for these curves. This improves on the work of Fotiadis and Konstantinou, Fotiadis and Martindale, and Barbulescu, El Mrabet and Ghammam. We obtain a short-list of interesting families of curves that are resistant to the Special TNFS algorithm, of embedding degrees 10 to 16 for the 128-bit security level. We conclude that at the 128-bit security level, BLS-12 and Fotiadis–Konstantinou–Martindale curves with $$k=12$$ over a 440 to 448-bit prime field seem to be the best choice for pairing efficiency. We also give hints at the 192-bit security level.
2020
PKC
On Black-Box Extensions of Non-interactive Zero-Knowledge Arguments, and Signatures Directly from Simulation Soundness 📺
Highly efficient non-interactive zero-knowledge arguments (NIZK) are often constructed for limited languages and it is not known how to extend them to cover wider classes of languages in general. In this work we initiate a study on black-box language extensions for conjunctive and disjunctive relations, that is, building a NIZK system for $${mathcal L}diamond hat{{mathcal L}}$$ (with $$diamond in {wedge , vee }$$ ) based on NIZK systems for languages $${mathcal L}$$ and $$hat{{mathcal L}}$$ . While the conjunctive extension of NIZKs is straightforward by simply executing the given NIZKs in parallel, it is not known how disjunctive extensions could be achieved in a black-box manner. Besides, observe that the simple conjunctive extension does not work in the case of simulation-sound NIZKs (SS-NIZKs), as pointed out by Sahai (Sahai, FOCS 1999). Our main contribution is an impossibility result that negates the existence of the above extensions and implies other non-trivial separations among NIZKs, SS-NIZKs, and labelled SS-NIZKs. Motivated by the difficulty of such transformations, we additionally present an efficient construction of signature schemes based on unbounded simulation-sound NIZKs (USS-NIZKs) for any language without language extensions.
2020
PKC
Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 📺
In this paper, we present a strong, formal, and general-purpose cryptographic model for privacy-preserving authenticated key exchange (PPAKE) protocols. PPAKE protocols are secure in the traditional AKE sense but additionally guarantee the confidentiality of the identities used in communication sessions. Our model has several useful and novel features, among others: it is a proper extension of classical AKE models, guarantees in a strong sense that the confidentiality of session keys is independent from the secrecy of the used identities, and it is the first to support what we call dynamic modes, where the responsibility of selecting the identities of the communication partners may vary over several protocol runs. We show the validity of our model by applying it to the cryptographic core of IPsec IKEv2 with signature-based authentication where the need for dynamic modes is practically well-motivated. In our analysis, we not only show that this protocol provides strong classical AKE security guarantees but also that the identities that are used by the parties remain hidden in successful protocol runs. Historically, the Internet Key Exchange (IKE) protocol was the first real-world AKE to incorporate privacy-preserving techniques. However, lately privacy-preserving techniques have gained renewed interest in the design process of important protocols like TLS 1.3 (with encrypted SNI) and NOISE. We believe that our new model can be a solid foundation to analyze these and other practical protocols with respect to their privacy guarantees, in particular, in the now so wide-spread scenario where multiple virtual servers are hosted on a single machine.
2020
PKC
On QA-NIZK in the BPK Model 📺
Recently, Bellare et al. defined subversion-resistance (security in the case the CRS creator may be malicious) for NIZK. In particular, a Sub-ZK NIZK is zero-knowledge, even in the case of subverted CRS. We study Sub-ZK QA-NIZKs, where the CRS can depend on the language parameter. First, we observe that subversion zero-knowledge (Sub-ZK) in the CRS model corresponds to no-auxiliary-string non-black-box NIZK in the Bare Public Key model, and hence, the use of non-black-box techniques is needed to obtain Sub-ZK. Second, we give a precise definition of Sub-ZK QA-NIZKs that are (knowledge-)sound if the language parameter but not the CRS is subverted and zero-knowledge even if both are subverted. Third, we prove that the most efficient known QA-NIZK for linear subspaces by Kiltz and Wee is Sub-ZK under a new knowledge assumption that by itself is secure in (a weaker version of) the algebraic group model. Depending on the parameter setting, it is (knowledge-)sound under different non-falsifiable assumptions, some of which do not belong to the family of knowledge assumptions.
2020
PKC
Linearly-Homomorphic Signatures and Scalable Mix-Nets 📺
Anonymity is a primary ingredient for our digital life. Several tools have been designed to address it such as, for authentication, blind signatures, group signatures or anonymous credentials and, for confidentiality, randomizable encryption or mix-nets. When it comes to complex electronic voting schemes, random shuffling of authenticated ciphertexts with mix-nets is the only known tool. However, it requires huge and complex zero-knowledge proofs to guarantee the actual permutation of the initial ciphertexts in a privacy-preserving way. In this paper, we propose a new approach for proving correct shuffling of signed ElGamal ciphertexts: the mix-servers can simply randomize individual ballots, which means the ciphertexts, the signatures, and the verification keys, with an additional global proof of constant size, and the output will be publicly verifiable. The security proof is in the generic bilinear group model. The computational complexity for the each mix-server is linear in the number of ballots. Verification is also linear in the number of ballots, but independent of the number of rounds of mixing. This leads to a new highly scalable technique. Our construction makes use of linearly-homomorphic signatures, with new features, that are of independent interest.
2020
PKC
Improved Discrete Gaussian and Subgaussian Analysis for Lattice Cryptography 📺
Discrete Gaussian distributions over lattices are central to lattice-based cryptography, and to the computational and mathematical aspects of lattices more broadly. The literature contains a wealth of useful theorems about the behavior of discrete Gaussians under convolutions and related operations. Yet despite their structural similarities, most of these theorems are formally incomparable, and their proofs tend to be monolithic and written nearly “from scratch,” making them unnecessarily hard to verify, understand, and extend. In this work we present a modular framework for analyzing linear operations on discrete Gaussian distributions. The framework abstracts away the particulars of Gaussians, and usually reduces proofs to the choice of appropriate linear transformations and elementary linear algebra. To showcase the approach, we establish several general properties of discrete Gaussians, and show how to obtain all prior convolution theorems (along with some new ones) as straightforward corollaries. As another application, we describe a self-reduction for Learning With Errors (LWE) that uses a fixed number of samples to generate an unlimited number of additional ones (having somewhat larger error). The distinguishing features of our reduction are its simple analysis in our framework, and its exclusive use of discrete Gaussians without any loss in parameters relative to a prior mixed discrete-and-continuous approach. As a contribution of independent interest, for subgaussian random matrices we prove a singular value concentration bound with explicitly stated constants, and we give tighter heuristics for specific distributions that are commonly used for generating lattice trapdoors. These bounds yield improvements in the concrete bit-security estimates for trapdoor lattice cryptosystems.
2020
PKC
Efficient Redactable Signature and Application to Anonymous Credentials 📺
Let us assume that Alice has received a constant-size signature on a set of messages $${m_i}_{i=1}^n$$ from some organization. Depending on the situation, Alice might need to disclose, prove relations about or hide some of these messages. Ideally, the complexity of the corresponding protocols should not depend on the hidden messages. In particular, if Alice wants to disclose only k messages, then the authenticity of the latter should be verifiable in at most O ( k ) operations. Many solutions were proposed over the past decades, but they only provide a partial answer to this problem. In particular, we note that they suffer either from the need to prove knowledge of the hidden elements or from the inability to prove that the latter satisfy some relations. In this paper, we propose a very efficient constant-size redactable signature scheme that addresses all the problems above. Signatures can indeed be redacted to remain valid only on a subset of k messages included in $${m_i}_{i=1}^n$$ . The resulting redacted signature consists of 4 elements and can be verified with essentially k exponentiations. Different shows of the same signature can moreover be made unlinkable leading to a very efficient anonymous credentials system.
2020
PKC
Verifiable Inner Product Encryption Scheme 📺
In the standard setting of functional encryption (FE), we assume both the Central Authority (CA) and the encryptors to run their respective algorithms faithfully. Badrinarayanan et al. [ASIACRYPT 2016] proposed the concept of verifiable FE, which essentially guarantees that dishonest encryptors and authorities, even when colluding together, are not able to generate ciphertexts and tokens that give “inconsistent” results. They also provide a compiler turning any perfectly correct FE into a verifiable FE, but do not give efficient constructions. In this paper we improve on this situation by considering Inner-Product Encryption (IPE), which is a special case of functional encryption and a primitive that has attracted wide interest from both practitioners and researchers in the last decade. Specifically, we construct the first efficient verifiable IPE (VIPE) scheme according to the inner-product functionality of Katz, Sahai and Waters [EUROCRYPT 2008]. To instantiate the general construction of Badrinarayanan et al. we need to solve several additional challenges. In particular, we construct the first efficient perfectly correct IPE scheme. Our VIPE satisfies unconditional verifiability, whereas its privacy relies on the DLin assumption.
2020
PKC
Almost Tight Security in Lattice with Polynomial Moduli - PRF, IBE, All-but-many LTF, and More 📺
Achieving tight security is a fundamental task in cryptography. While one of the most important purposes of this task is to improve the overall efficiency of a construction (by allowing smaller security parameters), many current lattice-based instantiations do not completely achieve the goal. Particularly, a super-polynomial modulus seems to be necessary in all prior work for (almost) tight schemes that allow the adversary to conduct queries, such as PRF, IBE, and Signatures. As the super-polynomial modulus would affect the noise-to-modulus ratio and thus increase the parameters, this might cancel out the advantages (in efficiency) brought from the tighter analysis. To determine the full power of tight security/analysis in lattices, it is necessary to determine whether the super-polynomial modulus restriction is inherent. In this work, we remove the super-polynomial modulus restriction for many important primitives – PRF, IBE, All-but-many Lossy Trapdoor Functions, and Signatures. The crux relies on an improvement over the framework of Boyen and Li (Asiacrypt 16), and an almost tight reduction from LWE to LWR, which improves prior work by Alwen et al. (Crypto 13), Bogdanov et al. (TCC 16), and Bai et al. (Asiacrypt 15). By combining these two advances, we are able to derive these almost tight schemes under LWE with a polynomial modulus.
2020
PKC
MPSign: A Signature from Small-Secret Middle-Product Learning with Errors 📺
We describe a digital signature scheme $$mathsf {MPSign}$$ , whose security relies on the conjectured hardness of the Polynomial Learning With Errors problem ( $$mathsf {PLWE}$$ ) for at least one defining polynomial within an exponential-size family (as a function of the security parameter). The proposed signature scheme follows the Fiat-Shamir framework and can be viewed as the Learning With Errors counterpart of the signature scheme described by Lyubashevsky at Asiacrypt 2016, whose security relies on the conjectured hardness of the Polynomial Short Integer Solution ( $$mathsf {PSIS}$$ ) problem for at least one defining polynomial within an exponential-size family. As opposed to the latter, $$mathsf {MPSign}$$ enjoys a security proof from $$mathsf {PLWE}$$ that is tight in the quantum-access random oracle model. The main ingredient is a reduction from $$mathsf {PLWE}$$ for an arbitrary defining polynomial among exponentially many, to a variant of the Middle-Product Learning with Errors problem ( $$mathsf {MPLWE}$$ ) that allows for secrets that are small compared to the working modulus. We present concrete parameters for $$mathsf {MPSign}$$ using such small secrets, and show that they lead to significant savings in signature length over Lyubashevsky’s Asiacrypt 2016 scheme (which uses larger secrets) at typical security levels. As an additional small contribution, and in contrast to $$mathsf {MPSign}$$ (or $$mathsf {MPLWE}$$ ), we present an efficient key-recovery attack against Lyubashevsky’s scheme (or the inhomogeneous $$mathsf {PSIS}$$ problem), when it is used with sufficiently small secrets, showing the necessity of a lower bound on secret size for the security of that scheme.
2020
PKC
A New Paradigm for Public-Key Functional Encryption for Degree-2 Polynomials 📺
We give the first public-key functional encryption that supports the generation of functional decryption keys for degree-2 polynomials, with succinct ciphertexts, whose semi-adaptive simulation-based security is proven under standard assumptions. At the heart of our new paradigm lies a so-called partially function-hiding functional encryption scheme for inner products, which admits public-key instances, and that is sufficient to build functional encryption for degree-2 polynomials. Doing so, we improve upon prior works, such as the constructions from Lin (CRYPTO 17) or Ananth Sahai (EUROCRYPT 17), both of which rely on function-hiding inner product FE, that can only exist in the private-key setting. The simplicity of our construction yields the most efficient FE for quadratic functions from standard assumptions (even those satisfying a weaker security notion). The interest of our methodology is that the FE for quadratic functions that builds upon any partially function-hiding FE for inner products inherits the security properties of the latter. In particular, we build a partially function-hiding FE for inner products that enjoys simulation security, in the semi-adaptive setting, where the challenge sent from the adversary can be chosen adaptively after seeing the public key (but before corrupting functional decryption keys). This is in contrast from prior public-key FE for quadratic functions from Baltico et al. (CRYPTO 17), which only achieved an indistinguishability-based, selective security. As a bonus, we show that we can obtain security against Chosen-Ciphertext Attacks straightforwardly. Even though this is the de facto security notion for encryption, this was not achieved by prior functional encryption schemes for quadratic functions, where the generic Fujisaki Okamoto transformation (CRYPTO 99) does not apply.
2020
PKC
Witness Indistinguishability for Any Single-Round Argument with Applications to Access Control 📺
Consider an access policy for some resource which only allows access to users of the system who own a certain set of attributes. Specifically, we consider the case where such an access structure is defined by some monotone function $$f:{0,1}^N ightarrow {0,1}$$ , belonging to some class of function $$F$$ (e.g. conjunctions, space bounded computation), where N is the number of possible attributes. In this work we show that any succinct single-round delegation scheme for the function class $$F$$ can be converted into a succinct single-round private access control protocol. That is, a verifier can be convinced that an approved user (i.e. one which holds an approved set of attributes) is accessing the system, without learning any additional information about the user or the set of attributes. As a main tool of independent interest, we show that assuming a quasi-polynomially secure two-message oblivious transfer scheme with statistical sender privacy (which can be based on quasi-polynomial hardness of the DDH, QR, DCR or LWE assumptions), we can convert any single-round protocol into a witness indistinguishable one, with similar communication complexity.