International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Daniel Tschudi

Affiliation: ETH Zurich

Publications

Year
Venue
Title
2020
PKC
Topology-Hiding Computation for Networks with Unknown Delays 📺
Topology-Hiding Computation (THC) allows a set of parties to securely compute a function over an incomplete network without revealing information on the network topology. Since its introduction in TCC’15 by Moran et al., the research on THC has focused on reducing the communication complexity, allowing larger graph classes, and tolerating stronger corruption types. All of these results consider a fully synchronous model with a known upper bound on the maximal delay of all communication channels. Unfortunately, in any realistic setting this bound has to be extremely large, which makes all fully synchronous protocols inefficient. In the literature on multi-party computation, this is solved by considering the fully asynchronous model. However, THC is unachievable in this model (and even hard to define), leaving even the definition of a meaningful model as an open problem. The contributions of this paper are threefold. First, we introduce a meaningful model of unknown and random communication delays for which THC is both definable and achievable. The probability distributions of the delays can be arbitrary for each channel, but one needs to make the (necessary) assumption that the delays are independent. The existing fully-synchronous THC protocols do not work in this setting and would, in particular, leak information about the topology. Second, in the model with trusted stateless hardware boxes introduced at Eurocrypt’18 by Ball et al., we present a THC protocol that works for any graph class. Third, we explore what is achievable in the standard model without trusted hardware and present a THC protocol for specific graph types (cycles and trees) secure under the DDH assumption. The speed of all protocols scales with the actual (unknown) delay times, in contrast to all previously known THC protocols whose speed is determined by the assumed upper bound on the network delay.
2020
ASIACRYPT
MPC with Synchronous Security and Asynchronous Responsiveness 📺
Two paradigms for secure MPC are synchronous and asynchronous protocols. While synchronous protocols tolerate more corruptions and allow every party to give its input, they are very slow because the speed depends on the conservatively assumed worst-case delay $\Delta$ of the network. In contrast, asynchronous protocols allow parties to obtain output as fast as the actual network allows, a property called \emph{responsiveness}, but unavoidably have lower resilience and parties with slow network connections cannot give input. It is natural to wonder whether it is possible to leverage synchronous MPC protocols to achieve responsiveness, hence obtaining the advantages of both paradigms: full security with responsiveness up to t corruptions, and 'extended' security (full security or security with unanimous abort) with no responsiveness up to a larger threshold T of corruptions. We settle the question by providing matching feasibility and impossibility results: -For the case of unanimous abort as extended security, there is an MPC protocol if and only if T + 2t < n. -For the case of full security as extended security, there is an MPC protocol if and only if T < n/2 and T + 2t < n. In particular, setting t = n/4 allows to achieve a fully secure MPC for honest majority, which in addition benefits from having substantial responsiveness.
2019
EUROCRYPT
Proof-of-Stake Protocols for Privacy-Aware Blockchains
Chaya Ganesh Claudio Orlandi Daniel Tschudi
Proof-of-stake (PoS) protocols are emerging as one of the most promising alternative to the wasteful proof-of-work (PoW) protocols for consensus in Blockchains (or distributed ledgers). However, current PoS protocols inherently disclose both the identity and the wealth of the stakeholders, and thus seem incompatible with privacy-preserving cryptocurrencies (such as ZCash, Monero, etc.). In this paper we initiate the formal study for PoS protocols with privacy properties. Our results include:1.A (theoretical) feasibility result showing that it is possible to construct a general class of private PoS (PPoS) protocols; and to add privacy to a wide class of PoS protocols,2.A privacy-preserving version of a popular PoS protocol, Ouroboros Praos. Towards our result, we define the notion of anonymous verifiable random function, which we believe is of independent interest.
2018
EUROCRYPT
2018
TCC
Topology-Hiding Computation Beyond Semi-Honest Adversaries
Topology-hiding communication protocols allow a set of parties, connected by an incomplete network with unknown communication graph, where each party only knows its neighbors, to construct a complete communication network such that the network topology remains hidden even from a powerful adversary who can corrupt parties. This communication network can then be used to perform arbitrary tasks, for example secure multi-party computation, in a topology-hiding manner. Previously proposed protocols could only tolerate passive corruption. This paper proposes protocols that can also tolerate fail-corruption (i.e., the adversary can crash any party at any point in time) and so-called semi-malicious corruption (i.e., the adversary can control a corrupted party’s randomness), without leaking more than an arbitrarily small fraction of a bit of information about the topology. A small-leakage protocol was recently proposed by Ball et al. [Eurocrypt’18], but only under the unrealistic set-up assumption that each party has a trusted hardware module containing secret correlated pre-set keys, and with the further two restrictions that only passively corrupted parties can be crashed by the adversary, and semi-malicious corruption is not tolerated. Since leaking a small amount of information is unavoidable, as is the need to abort the protocol in case of failures, our protocols seem to achieve the best possible goal in a model with fail-corruption.Further contributions of the paper are applications of the protocol to obtain secure MPC protocols, which requires a way to bound the aggregated leakage when multiple small-leakage protocols are executed in parallel or sequentially. Moreover, while previous protocols are based on the DDH assumption, a new so-called PKCR public-key encryption scheme based on the LWE assumption is proposed, allowing to base topology-hiding computation on LWE. Furthermore, a protocol using fully-homomorphic encryption achieving very low round complexity is proposed.
2017
CRYPTO
2016
CRYPTO
2013
ASIACRYPT