International Association for Cryptologic Research

International Association
for Cryptologic Research


Marta Mularczyk


Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging
Daniel Jost Ueli Maurer Marta Mularczyk
In the era of mass surveillance and information breaches, privacy of Internet communication, and messaging in particular, is a growing concern. As secure messaging protocols are executed on the not-so-secure end-user devices, and because their sessions are long-lived, they aim to guarantee strong security even if secret states and local randomness can be exposed.The most basic security properties, including forward secrecy, can be achieved using standard techniques such as authenticated encryption. Modern protocols, such as Signal, go one step further and additionally provide the so-called backward secrecy, or healing from state exposures. These additional guarantees come at the price of a moderate efficiency loss (they require public-key primitives).On the opposite side of the security spectrum are the works by Jaeger and Stepanovs and by Poettering and Rösler, which characterize the optimal security a secure-messaging scheme can achieve. However, their proof-of-concept constructions suffer from an extreme efficiency loss compared to Signal. Moreover, this caveat seems inherent.This paper explores the area in between: our starting point are the basic, efficient constructions, and then we ask how far we can go towards the optimal security without losing too much efficiency. We present a construction with guarantees much stronger than those achieved by Signal, and slightly weaker than optimal, yet its efficiency is closer to that of Signal (only standard public-key cryptography is used).On a technical level, achieving optimal guarantees inherently requires key-updating public-key primitives, where the update information is allowed to be public. We consider secret update information instead. Since a state exposure temporally breaks confidentiality, we carefully design such secretly-updatable primitives whose security degrades gracefully if the supposedly secret update information leaks.
Topology-Hiding Computation Beyond Semi-Honest Adversaries
Topology-hiding communication protocols allow a set of parties, connected by an incomplete network with unknown communication graph, where each party only knows its neighbors, to construct a complete communication network such that the network topology remains hidden even from a powerful adversary who can corrupt parties. This communication network can then be used to perform arbitrary tasks, for example secure multi-party computation, in a topology-hiding manner. Previously proposed protocols could only tolerate passive corruption. This paper proposes protocols that can also tolerate fail-corruption (i.e., the adversary can crash any party at any point in time) and so-called semi-malicious corruption (i.e., the adversary can control a corrupted party’s randomness), without leaking more than an arbitrarily small fraction of a bit of information about the topology. A small-leakage protocol was recently proposed by Ball et al. [Eurocrypt’18], but only under the unrealistic set-up assumption that each party has a trusted hardware module containing secret correlated pre-set keys, and with the further two restrictions that only passively corrupted parties can be crashed by the adversary, and semi-malicious corruption is not tolerated. Since leaking a small amount of information is unavoidable, as is the need to abort the protocol in case of failures, our protocols seem to achieve the best possible goal in a model with fail-corruption.Further contributions of the paper are applications of the protocol to obtain secure MPC protocols, which requires a way to bound the aggregated leakage when multiple small-leakage protocols are executed in parallel or sequentially. Moreover, while previous protocols are based on the DDH assumption, a new so-called PKCR public-key encryption scheme based on the LWE assumption is proposed, allowing to base topology-hiding computation on LWE. Furthermore, a protocol using fully-homomorphic encryption achieving very low round complexity is proposed.