International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Shi-Feng Sun

Affiliation: Monash University, Data61, CSIRO

Publications

Year
Venue
Title
2020
EUROCRYPT
Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs for One-Way to Hiding and CCA Security 📺
We introduce a new technique called `Measure-Rewind-Measure' (MRM) to achieve tighter security proofs in the quantum random oracle model (QROM). We first apply our MRM technique to derive a new security proof for a variant of the `double-sided' quantum One-Way to Hiding Lemma (O2H) of Bindel et al. [TCC 2019] which, for the first time, avoids the square-root advantage loss in the security proof. In particular, it bypasses a previous `impossibility result' of Jiang, Zhang and Ma [IACR eprint 2019]. We then apply our new O2H Lemma to give a new tighter security proof for the Fujisaki-Okamoto transform for constructing a strong (INDCCA) Key Encapsulation Mechanism (KEM) from a weak (INDCPA) public-key encryption scheme satisfying a mild injectivity assumption.
2020
PKC
Public-Key Puncturable Encryption: Modular and Compact Constructions 📺
We revisit the method of designing public-key puncturable encryption schemes and present a generic conversion by leveraging the techniques of distributed key-distribution and revocable encryption. In particular, we first introduce a refined version of identity-based revocable encryption, named key-homomorphic identity-based revocable key encapsulation mechanism with extended correctness . Then, we propose a generic construction of puncturable key encapsulation mechanism from the former by merging the idea of distributed key-distribution. Compared to the state-of-the-art, our generic construction supports unbounded number of punctures and multiple tags per message, thus achieving more fine-grained revocation of decryption capability. Further, it does not rely on random oracles , not suffer from non-negligible correctness error, and results in a variety of efficient schemes with distinct features. More precisely, we obtain the first scheme with very compact ciphertexts in the standard model, and the first scheme with support for both unbounded size of tags per ciphertext and unbounded punctures as well as constant-time puncture operation. Moreover, we get a comparable scheme proven secure under the standard DBDH assumption, which enjoys both faster encryption and decryption than previous works based on the same assumption, especially when the number of tags associated with the ciphertext is large.