International Association for Cryptologic Research

International Association
for Cryptologic Research


Carsten Baum

Affiliation: Bar Ilan University


TARDIS: A Foundation of Time-Lock Puzzles in UC
Time-based primitives like time-lock puzzles (TLP) are finding widespread use in practical protocols, partially due to the surge of interest in the blockchain space where TLPs and related primitives are perceived to solve many problems. Unfortunately, the security claims are often shaky or plainly wrong since these primitives are used under composition. One reason is that TLPs are inherently not UC secure and time is tricky to model and use in the UC model. On the other hand, just specifying standalone notions of the intended task, left alone correctly using standalone notions like non-malleable TLPs only, might be hard or impossible for the given task. And even when possible a standalone secure primitive is harder to apply securely in practice afterwards as its behavior under composition is unclear. The ideal solution would be a model of TLPs in the UC framework to allow simple modular proofs. In this paper we provide a foundation for proving composable security of practical protocols using time-lock puzzles and related timed primitives in the UC model. We construct UC-secure TLPs based on random oracles and show that using random oracles is necessary. In order to prove security, we provide a simple and abstract way to reason about time in UC protocols. Finally, we demonstrate the usefulness of this foundation by constructing applications that are interesting in their own right, such as UC-secure two-party computation with output-independent abort.
Banquet: Short and Fast Signatures from AES 📺
In this work we introduce Banquet, a digital signature scheme with post-quantum security, constructed using only symmetric-key primitives. The design is based on the MPC-in-head paradigm also used by Picnic (CCS 2017) and BBQ (SAC 2019). Like BBQ, Banquet uses only standardized primitives, namely AES and SHA-3, but signatures are more than 50\% shorter, making them competitive with Picnic (which uses a non-standard block cipher to improve performance). The MPC protocol in Banquet uses a new technique to verify correctness of the AES S-box computations, which is efficient because the cost is amortized with a batch verification strategy. Our implementation and benchmarks also show that both signing and verification can be done in under 10ms on a current x64 CPU. We also explore the parameter space to show the range of trade-offs that are possible with the Banquet design, and show that Banquet can nearly match the signature sizes possible with Picnic (albeit with slower, but still practical run times) or have speed within a factor of two of Picnic (at the cost of larger signatures).
Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits and Their Application to Lattice-Based Cryptography 📺
Carsten Baum Ariel Nof
In this work we present a new interactive Zero-Knowledge Argument of knowledge for general arithmetic circuits. Our protocol is based on the “MPC-in-the-head”-paradigm of Ishai et al. (STOC 2009) and follows the recent “MPC-in-the-head with Preprocessing” as proposed by Katz, Kolesnikov and Wang (ACM CCS 2018). However, in contrast to Katz et al. who used the “cut-and-choose” approach for pre-processing, we show how to incorporate the well-known “sacrificing” paradigm into “MPC-in-the-head”, which reduces the proof size when working over arithmetic circuits. Our argument system uses only lightweight symmetric-key primitives and utilizes a simplified version of the so-called SPDZ-protocol. Based on specific properties of our protocol we then show how it can be used to construct an efficient Zero-Knowledge Argument of Knowledge for instances of the Short Integer Solution (SIS) problem. We present different protocols that are tailored to specific uses of SIS, while utilizing the advantages of our scheme. In particular, we present a variant of our argument system that allows the parties to sample the circuit “on the fly”, which may be of independent interest. We furthermore implemented our Zero-Knowledge argument for SIS and show that using our protocols it is possible to run a complete interactive proof, even for general SIS instances which result in a circuit with $${>}10^6$$ gates, in less than 0.5 s .
Efficient Constant-Round MPC with Identifiable Abort and Public Verifiability 📺
Recent years have seen a tremendous growth in the interest in se- cure multiparty computation (MPC) and its applications. While much progress has been made concerning its efficiency, many current, state-of-the-art protocols are vulnerable to Denial of Service attacks, where a cheating party may prevent the honest parties from learning the output of the computation, whilst remaining anonymous. The security model of identifiable abort aims to prevent these at- tacks, by allowing honest parties to agree upon the identity of a cheating party, who can then be excluded in the future. Several existing MPC protocols offer security with identifiable abort against a dishonest majority of corrupted parties. However, all of these protocols have a round complexity that scales linearly with the depth of the circuit (and are therefore unsuitable for use in high latency net- works) or use cryptographic primitives or techniques that have a high computa- tional overhead. In this work, we present the first efficient MPC protocols with identifiable abort in the dishonest majority setting, which run in a constant number of rounds and make only black-box use of cryptographic primitives. Our main construction is built from highly efficient primitives in a careful way to achieve identifiability at a low cost. In particular, we avoid the use of public-key operations outside of a setup phase, incurring a relatively low overhead on top of the fastest currently known constant-round MPC protocols based on garbled circuits. Our construction also avoids the use of adaptively secure primitives and heavy zero-knowledge machinery, which was inherent in previous works. In addition, we show how to upgrade our protocol to achieve public verifiability using a public bulletin board, allowing any external party to verify correctness of the computation or identify a cheating party.
Sub-linear Lattice-Based Zero-Knowledge Arguments for Arithmetic Circuits 📺
We propose the first zero-knowledge argument with sub-linear communication complexity for arithmetic circuit satisfiability over a prime $${p}$$ whose security is based on the hardness of the short integer solution (SIS) problem. For a circuit with $${N}$$ gates, the communication complexity of our protocol is $$O\left( \sqrt{{N}{\lambda }\log ^3{{N}}}\right) $$ , where $${\lambda }$$ is the security parameter. A key component of our construction is a surprisingly simple zero-knowledge proof for pre-images of linear relations whose amortized communication complexity depends only logarithmically on the number of relations being proved. This latter protocol is a substantial improvement, both theoretically and in practice, over the previous results in this line of research of Damgård et al. (CRYPTO 2012), Baum et al. (CRYPTO 2016), Cramer et al. (EUROCRYPT 2017) and del Pino and Lyubashevsky (CRYPTO 2017), and we believe it to be of independent interest.