International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Jiang Zhang

Affiliation: State Key Laboratory of Cryptology, China

Publications

Year
Venue
Title
2019
ASIACRYPT
Valiant’s Universal Circuits Revisited: An Overall Improvement and a Lower Bound
A universal circuit (UC) is a general-purpose circuit that can simulate arbitrary circuits (up to a certain size n). At STOC 1976 Valiant presented a graph theoretic approach to the construction of UCs, where a UC is represented by an edge universal graph (EUG) and is recursively constructed using a dedicated graph object (referred to as supernode). As a main end result, Valiant constructed a 4-way supernode of size 19 and an EUG of size $$4.75n\log n$$ (omitting smaller terms), which remained the most size-efficient even to this day (after more than 4 decades).Motivated by the emerging applications of UCs in various privacy preserving computation scenarios, we revisit Valiant’s universal circuits, and propose a 4-way supernode of size 18, and an EUG of size $$4.5n\log n$$. As confirmed by our implementations, we reduce the size of universal circuits (and the number of AND gates) by more than 5% in general, and thus improve upon the efficiency of UC-based cryptographic applications accordingly. Our approach to the design of optimal supernodes is computer aided (rather than by hand as in previous works), which might be of independent interest. As a complement, we give lower bounds on the size of EUGs and UCs in Valiant’s framework, which significantly improves upon the generic lower bound on UC size and therefore reduces the gap between theory and practice of universal circuits.
2019
ASIACRYPT
Collision Resistant Hashing from Sub-exponential Learning Parity with Noise
The Learning Parity with Noise (LPN) problem has recently found many cryptographic applications such as authentication protocols, pseudorandom generators/functions and even asymmetric tasks including public-key encryption (PKE) schemes and oblivious transfer (OT) protocols. It however remains a long-standing open problem whether LPN implies collision resistant hash (CRH) functions. Inspired by the recent work of Applebaum et al. (ITCS 2017), we introduce a general construction of CRH from LPN for various parameter choices. We show that, just to mention a few notable ones, under any of the following hardness assumptions (for the two most common variants of LPN) 1.constant-noise LPN is $$2^{n^{0.5+\varepsilon }}$$-hard for any constant $$\varepsilon >0$$;2.constant-noise LPN is $$2^{\varOmega (n/\log n)}$$-hard given $$q=\mathsf {poly}(n)$$ samples;3.low-noise LPN (of noise rate $$1/\sqrt{n}$$) is $$2^{\varOmega (\sqrt{n}/\log n)}$$-hard given $$q=\mathsf {poly}(n)$$ samples. there exists CRH functions with constant (or even poly-logarithmic) shrinkage, which can be implemented using polynomial-size depth-3 circuits with NOT, (unbounded fan-in) AND and XOR gates. Our technical route LPN $$\rightarrow $$ bSVP $$\rightarrow $$ CRH is reminiscent of the known reductions for the large-modulus analogue, i.e., LWE $$\rightarrow $$ SIS $$\rightarrow $$ CRH, where the binary Shortest Vector Problem (bSVP) was recently introduced by Applebaum et al. (ITCS 2017) that enables CRH in a similar manner to Ajtai’s CRH functions based on the Short Integer Solution (SIS) problem.Furthermore, under additional (arguably minimal) idealized assumptions such as small-domain random functions or random permutations (that trivially imply collision resistance), we still salvage a simple and elegant collision-resistance-preserving domain extender combining the best of the two worlds, namely, maximized (depth one) parallelizability and polynomial shrinkage. In particular, assume $$2^{n^{0.5+\varepsilon }}$$-hard constant-noise LPN or $$2^{n^{0.25+\varepsilon }}$$-hard low-noise LPN, we obtain a collision resistant hash function that evaluates in parallel only a single layer of small-domain random functions (or random permutations) and shrinks polynomially.
2017
ASIACRYPT
2016
CRYPTO
2016
CRYPTO
2016
PKC
2015
EPRINT
2015
PKC
2015
EUROCRYPT
2014
EPRINT
2014
ASIACRYPT
1999
ASIACRYPT

Program Committees

Asiacrypt 2017