## CryptoDB

### Huijia Lin

#### Publications

**Year**

**Venue**

**Title**

2022

EUROCRYPT

Indistinguishability Obfuscation from LPN over F_p, DLIN, and PRGs in NC^0
Abstract

In this work, we study what minimal sets of assumptions suffice for constructing indistinguishability obfuscation ($\iO$). We prove:
{\bf Theorem}(Informal): {\em Assume sub-exponential security of the following assumptions:
- the Learning Parity with Noise ($\mathsf{LPN}$) assumption over general prime fields $\mathbb{F}_p$ with
polynomially many $\mathsf{LPN}$ samples and error rate $1/k^\delta$, where $k$ is the dimension of the $\mathsf{LPN}$ secret, and $\delta>0$ is any constant;
- the existence of a Boolean Pseudo-Random Generator ($\mathsf{PRG}$) in $\mathsf{NC}^0$ with
stretch $n^{1+\tau}$, where $n$ is the length of the $\mathsf{PRG}$ seed, and $\tau>0$ is any constant;
- the Decision Linear ($\mathsf{DLIN}$) assumption on symmetric bilinear groups of prime order.
Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuits exists. Further, assuming only polynomial security of the aforementioned assumptions, there exists collusion resistant public-key functional encryption for all polynomial-size circuits.
This removes the reliance on the Learning With Errors (LWE) assumption from the recent work of [Jain, Lin, Sahai STOC'21]. As a consequence, we obtain the first fully homomorphic encryption scheme that does not rely on any lattice-based hardness assumption.
Our techniques feature a new notion of randomized encoding called Preprocessing Randomized Encoding (PRE), that essentially can be computed in the exponent of pairing groups. When combined with other new techniques, PRE gives a much more streamlined construction of $\iO$ while still maintaining reliance only on well-studied assumptions.

2022

EUROCRYPT

Non-malleable Commitments Against Quantum Attacks
Abstract

We construct, under standard hardness assumptions, the first non-malleable commitments secure against quantum attacks. Our commitments are statistically binding and satisfy the standard notion of {\em non-malleability with respect to commitment}. We obtain a $\log^\star(\lambda)$-round classical protocol, assuming the existence of post-quantum one-way functions.
Previously, non-malleable commitments with quantum security were only known against a restricted class of adversaries known as {\em synchronizing adversaries.} At the heart of our results is a new general technique that allows to modularly obtain non-malleable commitments from any extractable commitment protocol, obliviously of the underlying extraction strategy (black-box or non-black-box) or round complexity. The transformation may also be of interest in the classical setting.

2021

EUROCRYPT

Oblivious Transfer is in MiniQCrypt
📺
Abstract

MiniQCrypt is a world where quantum-secure one-way functions exist, and quantum communication is possible. We construct an oblivious transfer (OT) protocol in MiniQCrypt that achieves simulation-security against malicious quantum polynomial-time adversaries, building on the foundational work of Bennett, Brassard, Crepeau and Skubiszewska (CRYPTO 1991). Combining the OT protocol with prior works, we obtain secure two-party and multi-party computation protocols also in MiniQCrypt. This is in contrast to the classical world, where it is widely believed that OT does not exist in MiniCrypt.

2021

EUROCRYPT

Multi-Party Reusable Non-Interactive Secure Computation from LWE
📺
Abstract

Motivated by the goal of designing versatile and flexible secure computation protocols that at the same time require as little interaction as possible, we present new multiparty reusable Non-Interactive Secure Computation (mrNISC) protocols. This notion, recently introduced by Benhamouda and Lin (TCC 2020), is essentially two-round Multi-Party Computation (MPC) protocols where the first round of messages serves as a reusable commitment to the private inputs of participating parties. Using these commitments, any subset of parties can later compute any function of their choice on their respective inputs by just sending a single message to a stateless evaluator, conveying the result of the computation but nothing else. Importantly, the input commitments can be computed without knowing anything about other participating parties (neither their identities nor their number) and they are reusable across any number of desired computations.
We give a construction of mrNISC that achieves standard simulation security, as classical multi-round MPC protocols achieve. Our construction relies on the Learning With Errors (LWE) assumption with polynomial modulus, and on the existence of a pseudorandom function (PRF) in $\mathsf{NC}^1$. We achieve semi-malicious security in the plain model and malicious security by further relying on trusted setup (which is unavoidable for mrNISC). In comparison, the only previously known constructions of mrNISC were either using bilinear maps or using strong primitives such as program obfuscation.
We use our mrNISC to obtain new Multi-Key FHE (MKFHE) schemes with threshold decryption:
- In the CRS model, we obtain threshold MKFHE for $\mathsf{NC}^1$ based on LWE with only {\em polynomial} modulus and PRFs in $\mathsf{NC}^1$, whereas all previous constructions rely on LWE with super-polynomial modulus-to-noise ratio.
- In the plain model, we obtain threshold levelled MKFHE for $\mathsf{P}$ based on LWE with {\em polynomial} modulus, PRF in $\mathsf{NC}^1$, and NTRU, and another scheme for constant number of parties from LWE with sub-exponential modulus-to-noise ratio. The only known prior construction of threshold MKFHE (Ananth et al., TCC 2020) in the plain model restricts the set of parties who can compute together at the onset.

2021

EUROCRYPT

Indistinguishability Obfuscation from Simple-to-State Hard Problems: New Assumptions, New Techniques, and Simplification
📺
Abstract

In this work, we study the question of what set of simple-to-state assumptions suffice for constructing functional encryption and indistinguishability obfuscation ($i\mathcal{O}$), supporting all functions describable by polynomial-size circuits. Our work improves over the state-of-the-art work of Jain, Lin, Matt, and Sahai (Eurocrypt 2019) in multiple dimensions.
New Assumption: Previous to our work, all constructions of $i\mathcal{O}$ from simple assumptions required novel pseudorandomness generators involving LWE samples and constant-degree polynomials over the integers, evaluated on the error of the LWE samples. In contrast, Boolean pseudorandom generators (PRGs) computable by constant-degree polynomials have been extensively studied since the work of Goldreich (2000). We show how to replace the novel pseudorandom objects over the integers used in previous works, with appropriate Boolean pseudorandom generators with sufficient stretch, when combined with LWE with binary error over suitable parameters. Both binary error LWE and constant degree Goldreich PRGs have been a subject of extensive cryptanalysis since much before our work and thus we back the plausibility of our assumption with security against algorithms studied in context of cryptanalysis of these objects.
New Techniques:
we introduce a number of new techniques:
- We show how to build partially-hiding public-key functional encryption, supporting degree-2 functions in the secret part of the message, and arithmetic $\mathsf{NC}^1$ functions over the public part of the message, assuming only standard assumptions over asymmetric pairing groups.
- We construct single-ciphertext secret-key functional encryption for all circuits with {\em linear} key generation, assuming only the LWE assumption.
Simplification: Unlike prior works, our new techniques furthermore let us construct public-key functional encryption for polynomial-sized circuits directly (without invoking any bootstrapping theorem, nor transformation from secret-key to public key FE), and based only on the polynomial hardness of underlying assumptions. The functional encryption scheme satisfies a strong notion of efficiency where the size of the ciphertext grows only sublinearly in the output size of the circuit and not its size. Finally, assuming that the underlying assumptions are subexponentially hard, we can bootstrap this construction to achieve $i\mathcal{O}$.

2021

CRYPTO

Counterexamples to New Circular Security Assumptions Underlying iO
📺
Abstract

We study several strengthening of classical circular security assumptions which were recently introduced in four new lattice-based constructions of indistinguishability obfuscation: Brakerski-D\"ottling-Garg-Malavolta (Eurocrypt 2020), Gay-Pass (STOC 2021), Brakerski-D\"ottling-Garg-Malavolta (Eprint 2020) and Wee-Wichs (Eprint 2020).
We provide explicit counterexamples to the {\em $2$-circular shielded randomness leakage} assumption w.r.t.\ the Gentry-Sahai-Waters fully homomorphic encryption scheme proposed by Gay-Pass, and the {\em homomorphic pseudorandom LWE samples} conjecture proposed by Wee-Wichs.
Our work suggests a separation between classical circular security of the kind underlying un-levelled fully-homomorphic encryption from the strengthened versions underlying recent iO constructions, showing that they are not (yet) on the same footing.
Our counterexamples exploit the flexibility to choose specific implementations of circuits, which is explicitly allowed in the Gay-Pass assumption and unspecified in the Wee-Wichs assumption. Their indistinguishabilty obfuscation schemes are still unbroken. Our work shows that the assumptions, at least, need refinement. In particular, generic leakage-resilient circular security assumptions are delicate, and their security is sensitive to the specific structure of the leakages involved.

2020

EUROCRYPT

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and towards NL
📺
Abstract

We present a new general framework for constructing compact and
adaptively secure attribute-based encryption (ABE) schemes from
k-Lin in asymmetric bilinear pairing groups. Previously, the only
construction [Kowalczyk and Wee, Eurocrypt '19] that simultaneously
achieves compactness and adaptive security from static assumptions supports
policies represented by Boolean formulae. Our framework enables
supporting more expressive policies represented by arithmetic
branching programs.
Our framework extends to ABE for policies represented by uniform models
of computation such as Turing machines. Such policies enjoy the feature
of being applicable to attributes of arbitrary lengths. We obtain the first
compact adaptively secure ABE for deterministic and non-deterministic finite
automata (DFA and NFA) from k-Lin, previously unknown from any static
assumptions. Beyond finite automata, we obtain the first ABE for large
classes of uniform computation, captured by deterministic and
non-deterministic logspace Turing machines (the complexity classes
L and NL) based on k-Lin. Our ABE scheme has compact
secret keys of size linear in the description size of the Turing machine M.
The ciphertext size grows linearly in the input length, but also linearly in
the time complexity, and exponentially in the space complexity.
Irrespective of compactness, we stress that our scheme is the first
that supports large classes of Turing machines based solely on standard
assumptions. In comparison, previous ABE for general Turing machines all
rely on strong primitives related to indistinguishability obfuscation.

2020

TCC

Mr NISC: Multiparty Reusable Non-Interactive Secure Computation
📺
Abstract

Reducing interaction in Multiparty Computation (MPC) is a highly desirable goal in cryptography. It is known that 2-round MPC can be based on the minimal assumption of 2-round Oblivious Transfer (OT) [Benhamouda and Lin, Garg and Srinivasan, EC 2018], and 1-round MPC is impossible in general. In this work, we propose a natural ``hybrid'' model, called \emph{multiparty reusable Non-Interactive Secure Computation (mrNISC)}. In this model, parties publish encodings of their private inputs $x_i$ on a public bulletin board, once and for all. Later, any subset $I$ of them can compute \emph{on-the-fly} a function $f$ on their inputs $\vec x_I = {\{x_i\}}_{i \in I}$ by just sending a single message to a stateless evaluator, conveying the result $f(\vec x_I)$ and nothing else. Importantly, the input encodings can be \emph{reused} in any number of on-the-fly computations, and the same classical simulation security guaranteed by multi-round MPC, is achieved. In short, mrNISC has a minimal yet ``tractable'' interaction pattern.
We initiate the study of mrNISC on several fronts. First, we formalize the model of mrNISC protocols, and present both a UC security definition and a game-based security definition. Second, we construct mrNISC protocols in the plain model with semi-honest and semi-malicious security based on pairing groups. Third, we demonstrate the power of mrNISC by showing two applications: non-interactive MPC (NIMPC) with reusable setup and a distributed version of program obfuscation.
At the core of our construction of mrNISC is a witness encryption scheme for a special language that verifies Non-Interactive Zero-Knowledge (NIZK) proofs of the validity of computations over committed values, which is of independent interest.

2020

TCC

Information-Theoretic 2-Round MPC without Round Collapsing: Adaptive Security, and More
📺
Abstract

We present simpler and improved constructions of 2-round protocols for secure multi-party computation (MPC) in the semi-honest setting. Our main results are new information-theoretically secure protocols for arithmetic NC1 in two settings:
(i) the plain model tolerating up to $t < n/2$ corruptions; and
(ii) in the OLE-correlation model tolerating any number of corruptions.
Our protocols achieve adaptive security and require only black-box access to the underlying field, whereas previous results only achieve static security and require non-black-box field access. Moreover, both results extend to polynomial-size circuits with computational and adaptive security, while relying on black-box access to a pseudorandom generator. In the OLE correlation model, the extended protocols for circuits tolerate up to $n-1$ corruptions.
Along the way, we introduce a conceptually novel framework for 2-round MPC that does not rely on the round collapsing framework underlying all of the recent advances in 2-round MPC.

2020

ASIACRYPT

Succinct and Adaptively Secure ABE for Arithmetic Branching Programs from k-Lin
📺
Abstract

We present succinct and adaptively secure attribute-based encryption (ABE)
schemes for arithmetic branching programs, based on k-Lin in pairing groups.
Our key-policy ABE scheme have ciphertexts of constant size, independent of
the length of the attributes, and our ciphertext-policy ABE scheme have
secret keys of constant size. Our schemes improve upon the recent succinct
ABE schemes in [Tomida and Attrapadung, ePrint '20], which only handles
Boolean formulae. All other prior succinct ABE schemes either achieve
only selective security or rely on q-type assumptions.
Our schemes are obtained through a general and modular approach that combines
a public-key inner product functional encryption satisfying a new security
notion called gradual simulation security and an information-theoretic
randomized encoding scheme called arithmetic key garbling scheme.

2019

EUROCRYPT

How to Leverage Hardness of Constant-Degree Expanding Polynomials over $\mathbb {R}$R to build $i\mathcal {O}$iO
Abstract

In this work, we introduce and construct D-restricted Functional Encryption (FE) for any constant $$D \ge 3$$D≥3, based only on the SXDH assumption over bilinear groups. This generalizes the notion of 3-restricted FE recently introduced and constructed by Ananth et al. (ePrint 2018) in the generic bilinear group model.A $$D=(d+2)$$D=(d+2)-restricted FE scheme is a secret key FE scheme that allows an encryptor to efficiently encrypt a message of the form $$M=(\varvec{x},\varvec{y},\varvec{z})$$M=(x,y,z). Here, $$\varvec{x}\in \mathbb {F}_{\mathbf {p}}^{d\times n}$$x∈Fpd×n and $$\varvec{y},\varvec{z}\in \mathbb {F}_{\mathbf {p}}^n$$y,z∈Fpn. Function keys can be issued for a function $$f=\varSigma _{\varvec{I}= (i_1,..,i_d,j,k)}\ c_{\varvec{I}}\cdot \varvec{x}[1,i_1] \cdots \varvec{x}[d,i_d] \cdot \varvec{y}[j]\cdot \varvec{z}[k]$$f=ΣI=(i1,..,id,j,k)cI·x[1,i1]⋯x[d,id]·y[j]·z[k] where the coefficients $$c_{\varvec{I}}\in \mathbb {F}_{\mathbf {p}}$$cI∈Fp. Knowing the function key and the ciphertext, one can learn $$f(\varvec{x},\varvec{y},\varvec{z})$$f(x,y,z), if this value is bounded in absolute value by some polynomial in the security parameter and n. The security requirement is that the ciphertext hides $$\varvec{y}$$y and $$\varvec{z}$$z, although it is not required to hide $$\varvec{x}$$x. Thus $$\varvec{x}$$x can be seen as a public attribute.D-restricted FE allows for useful evaluation of constant-degree polynomials, while only requiring the SXDH assumption over bilinear groups. As such, it is a powerful tool for leveraging hardness that exists in constant-degree expanding families of polynomials over $$\mathbb {R}$$R. In particular, we build upon the work of Ananth et al. to show how to build indistinguishability obfuscation ($$i\mathcal {O}$$iO) assuming only SXDH over bilinear groups, LWE, and assumptions relating to weak pseudorandom properties of constant-degree expanding polynomials over $$\mathbb {R}$$R.

2019

EUROCRYPT

Non-Malleable Codes Against Bounded Polynomial Time Tampering
📺
Abstract

We construct efficient non-malleable codes (NMC) that are (computationally) secure against tampering by functions computable in any fixed polynomial time. Our construction is in the plain (no-CRS) model and requires the assumptions that (1) $$\mathbf {E}$$E is hard for $$\mathbf {NP}$$NP circuits of some exponential $$2^{\beta n}$$2βn ($$\beta >0$$β>0) size (widely used in the derandomization literature), (2) sub-exponential trapdoor permutations exist, and (3) $$\mathbf {P}$$P-certificates with sub-exponential soundness exist.While it is impossible to construct NMC secure against arbitrary polynomial-time tampering (Dziembowski, Pietrzak, Wichs, ICS ’10), the existence of NMC secure against $$O(n^c)$$O(nc)-time tampering functions (for any fixedc), was shown (Cheraghchi and Guruswami, ITCS ’14) via a probabilistic construction. An explicit construction was given (Faust, Mukherjee, Venturi, Wichs, Eurocrypt ’14) assuming an untamperable CRS with length longer than the runtime of the tampering function. In this work, we show that under computational assumptions, we can bypass these limitations. Specifically, under the assumptions listed above, we obtain non-malleable codes in the plain model against $$O(n^c)$$O(nc)-time tampering functions (for any fixed c), with codeword length independent of the tampering time bound.Our new construction of NMC draws a connection with non-interactive non-malleable commitments. In fact, we show that in the NMC setting, it suffices to have a much weaker notion called quasi non-malleable commitments—these are non-interactive, non-malleable commitments in the plain model, in which the adversary runs in $$O(n^c)$$O(nc)-time, whereas the honest parties may run in longer (polynomial) time. We then construct a 4-tag quasi non-malleable commitment from any sub-exponential OWF and the assumption that $$\mathbf {E}$$E is hard for some exponential size $$\mathbf {NP}$$NP-circuits, and use tag amplification techniques to support an exponential number of tags.

2019

CRYPTO

Indistinguishability Obfuscation Without Multilinear Maps: New Paradigms via Low Degree Weak Pseudorandomness and Security Amplification
📺
Abstract

The existence of secure indistinguishability obfuscators (
$$i\mathcal {O}$$
) has far-reaching implications, significantly expanding the scope of problems amenable to cryptographic study. All known approaches to constructing
$$i\mathcal {O}$$
rely on d-linear maps. While secure bilinear maps are well established in cryptographic literature, the security of candidates for
$$d>2$$
is poorly understood.We propose a new approach to constructing
$$i\mathcal {O}$$
for general circuits. Unlike all previously known realizations of
$$i\mathcal {O}$$
, we avoid the use of d-linear maps of degree
$$d \ge 3$$
.At the heart of our approach is the assumption that a new weak pseudorandom object exists. We consider two related variants of these objects, which we call perturbation resilient generator (
$$\varDelta $$
RG) and pseudo flawed-smudging generator (
$$\mathrm {PFG}$$
), respectively. At a high level, both objects are polynomially expanding functions whose outputs partially hide (or smudge) small noise vectors when added to them. We further require that they are computable by a family of degree-3 polynomials over
$$\mathbb {Z}$$
. We show how they can be used to construct functional encryption schemes with weak security guarantees. Finally, we use novel amplification techniques to obtain full security.As a result, we obtain
$$i\mathcal {O}$$
for general circuits assuming:Subexponentially secure LWEBilinear Maps
$$\mathrm {poly}(\lambda )$$
-secure 3-block-local PRGs
$$\varDelta $$
RGs or
$$\mathrm {PFG}$$
s

2018

EUROCRYPT

2018

TCC

Two-Round Adaptively Secure Multiparty Computation from Standard Assumptions
Abstract

We present the first two-round multiparty computation (MPC) protocols secure against malicious adaptive corruption in the common reference string (CRS) model, based on DDH, LWE, or QR. Prior two-round adaptively secure protocols were known only in the two-party setting against semi-honest adversaries, or in the general multiparty setting assuming the existence of indistinguishability obfuscation (iO).Our protocols are constructed in two steps. First, we construct two-round oblivious transfer (OT) protocols secure against malicious adaptive corruption in the CRS model based on DDH, LWE, or QR. We achieve this by generically transforming any two-round OT that is only secure against static corruption but has certain oblivious sampleability properties, into a two-round adaptively secure OT. Prior constructions were only secure against semi-honest adversaries or based on iO.Second, building upon recent constructions of two-round MPC from two-round OT in the weaker static corruption setting [Garg and Srinivasan, Benhamouda and Lin, Eurocrypt’18] and using equivocal garbled circuits from [Canetti, Poburinnaya and Venkitasubramaniam, STOC’17], we show how to construct two-round adaptively secure MPC from two-round adaptively secure OT and constant-round adaptively secure MPC, with respect to both malicious and semi-honest adversaries. As a corollary, we also obtain the first 2-round MPC secure against semi-honest adaptive corruption in the plain model based on augmented non-committing encryption (NCE), which can be based on a variety of assumptions, CDH, RSA, DDH, LWE, or factoring Blum integers. Finally, we mention that our OT and MPC protocols in the CRS model are, in fact, adaptively secure in the Universal Composability framework.

2018

TCC

One-Message Zero Knowledge and Non-malleable Commitments
Abstract

We introduce a new notion of one-message zero-knowledge (1ZK) arguments that satisfy a weak soundness guarantee—the number of false statements that a polynomial-time non-uniform adversary can convince the verifier to accept is not much larger than the size of its non-uniform advice. The zero-knowledge guarantee is given by a simulator that runs in (mildly) super-polynomial time. We construct such 1ZK arguments based on the notion of multi-collision-resistant keyless hash functions, recently introduced by Bitansky, Kalai, and Paneth (STOC 2018). Relying on the constructed 1ZK arguments, subexponentially-secure time-lock puzzles, and other standard assumptions, we construct one-message fully-concurrent non-malleable commitments. This is the first construction that is based on assumptions that do not already incorporate non-malleability, as well as the first based on (subexponentially) falsifiable assumptions.

#### Program Committees

- TCC 2021
- TCC 2020
- Eurocrypt 2019
- Crypto 2017
- TCC 2016
- Crypto 2015
- Crypto 2013

#### Coauthors

- Prabhanjan Ananth (2)
- Marshall Ball (1)
- Fabrice Benhamouda (4)
- Nir Bitansky (5)
- Ran Canetti (3)
- Yu-Chi Chen (1)
- Binyi Chen (1)
- Alessandro Chiesa (1)
- Kai-Min Chung (2)
- Dana Dachman-Soled (2)
- Romain Gay (1)
- Shafi Goldwasser (1)
- Vipul Goyal (1)
- Alex B. Grilo (1)
- Shai Halevi (1)
- Samuel B. Hopkins (1)
- Aayush Jain (6)
- Susumu Kiyoshima (1)
- Ilan Komargodski (1)
- Mukul Kulkarni (1)
- Wei-Kai Lin (1)
- Tianren Liu (1)
- Ji Luo (2)
- Tal Malkin (1)
- Christian Matt (2)
- Omkant Pandey (1)
- Omer Paneth (2)
- Rafael Pass (9)
- Antigoni Polychroniadou (1)
- Aviad Rubinstein (1)
- Amit Sahai (5)
- Karn Seth (2)
- Omri Shmueli (1)
- Fang Song (1)
- Sidharth Telang (2)
- Stefano Tessaro (4)
- Eran Tromer (1)
- Wei-Lung Dustin Tseng (1)
- Vinod Vaikuntanathan (2)
- Muthuramakrishnan Venkitasubramaniam (5)
- Hoeteck Wee (1)