## CryptoDB

### Huijia Lin

#### Affiliation: University of Washington

#### Publications

**Year**

**Venue**

**Title**

2020

EUROCRYPT

Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and towards NL
📺
Abstract

We present a new general framework for constructing compact and
adaptively secure attribute-based encryption (ABE) schemes from
k-Lin in asymmetric bilinear pairing groups. Previously, the only
construction [Kowalczyk and Wee, Eurocrypt '19] that simultaneously
achieves compactness and adaptive security from static assumptions supports
policies represented by Boolean formulae. Our framework enables
supporting more expressive policies represented by arithmetic
branching programs.
Our framework extends to ABE for policies represented by uniform models
of computation such as Turing machines. Such policies enjoy the feature
of being applicable to attributes of arbitrary lengths. We obtain the first
compact adaptively secure ABE for deterministic and non-deterministic finite
automata (DFA and NFA) from k-Lin, previously unknown from any static
assumptions. Beyond finite automata, we obtain the first ABE for large
classes of uniform computation, captured by deterministic and
non-deterministic logspace Turing machines (the complexity classes
L and NL) based on k-Lin. Our ABE scheme has compact
secret keys of size linear in the description size of the Turing machine M.
The ciphertext size grows linearly in the input length, but also linearly in
the time complexity, and exponentially in the space complexity.
Irrespective of compactness, we stress that our scheme is the first
that supports large classes of Turing machines based solely on standard
assumptions. In comparison, previous ABE for general Turing machines all
rely on strong primitives related to indistinguishability obfuscation.

2020

TCC

Mr NISC: Multiparty Reusable Non-Interactive Secure Computation
Abstract

Reducing interaction in Multiparty Computation (MPC) is a highly desirable goal in cryptography. It is known that 2-round MPC can be based on the minimal assumption of 2-round Oblivious Transfer (OT) [Benhamouda and Lin, Garg and Srinivasan, EC 2018], and 1-round MPC is impossible in general. In this work, we propose a natural ``hybrid'' model, called \emph{multiparty reusable Non-Interactive Secure Computation (mrNISC)}. In this model, parties publish encodings of their private inputs $x_i$ on a public bulletin board, once and for all. Later, any subset $I$ of them can compute \emph{on-the-fly} a function $f$ on their inputs $\vec x_I = {\{x_i\}}_{i \in I}$ by just sending a single message to a stateless evaluator, conveying the result $f(\vec x_I)$ and nothing else. Importantly, the input encodings can be \emph{reused} in any number of on-the-fly computations, and the same classical simulation security guaranteed by multi-round MPC, is achieved. In short, mrNISC has a minimal yet ``tractable'' interaction pattern.
We initiate the study of mrNISC on several fronts. First, we formalize the model of mrNISC protocols, and present both a UC security definition and a game-based security definition. Second, we construct mrNISC protocols in the plain model with semi-honest and semi-malicious security based on pairing groups. Third, we demonstrate the power of mrNISC by showing two applications: non-interactive MPC (NIMPC) with reusable setup and a distributed version of program obfuscation.
At the core of our construction of mrNISC is a witness encryption scheme for a special language that verifies Non-Interactive Zero-Knowledge (NIZK) proofs of the validity of computations over committed values, which is of independent interest.

2020

TCC

Information-Theoretic 2-Round MPC without Round Collapsing: Adaptive Security, and More
Abstract

We present simpler and improved constructions of 2-round protocols for secure multi-party computation (MPC) in the semi-honest setting. Our main results are new information-theoretically secure protocols for arithmetic NC1 in two settings:
(i) the plain model tolerating up to $t < n/2$ corruptions; and
(ii) in the OLE-correlation model tolerating any number of corruptions.
Our protocols achieve adaptive security and require only black-box access to the underlying field, whereas previous results only achieve static security and require non-black-box field access. Moreover, both results extend to polynomial-size circuits with computational and adaptive security, while relying on black-box access to a pseudorandom generator. In the OLE correlation model, the extended protocols for circuits tolerate up to $n-1$ corruptions.
Along the way, we introduce a conceptually novel framework for 2-round MPC that does not rely on the round collapsing framework underlying all of the recent advances in 2-round MPC.

2019

EUROCRYPT

How to Leverage Hardness of Constant-Degree Expanding Polynomials over $\mathbb {R}$R to build $i\mathcal {O}$iO
Abstract

In this work, we introduce and construct D-restricted Functional Encryption (FE) for any constant $$D \ge 3$$D≥3, based only on the SXDH assumption over bilinear groups. This generalizes the notion of 3-restricted FE recently introduced and constructed by Ananth et al. (ePrint 2018) in the generic bilinear group model.A $$D=(d+2)$$D=(d+2)-restricted FE scheme is a secret key FE scheme that allows an encryptor to efficiently encrypt a message of the form $$M=(\varvec{x},\varvec{y},\varvec{z})$$M=(x,y,z). Here, $$\varvec{x}\in \mathbb {F}_{\mathbf {p}}^{d\times n}$$x∈Fpd×n and $$\varvec{y},\varvec{z}\in \mathbb {F}_{\mathbf {p}}^n$$y,z∈Fpn. Function keys can be issued for a function $$f=\varSigma _{\varvec{I}= (i_1,..,i_d,j,k)}\ c_{\varvec{I}}\cdot \varvec{x}[1,i_1] \cdots \varvec{x}[d,i_d] \cdot \varvec{y}[j]\cdot \varvec{z}[k]$$f=ΣI=(i1,..,id,j,k)cI·x[1,i1]⋯x[d,id]·y[j]·z[k] where the coefficients $$c_{\varvec{I}}\in \mathbb {F}_{\mathbf {p}}$$cI∈Fp. Knowing the function key and the ciphertext, one can learn $$f(\varvec{x},\varvec{y},\varvec{z})$$f(x,y,z), if this value is bounded in absolute value by some polynomial in the security parameter and n. The security requirement is that the ciphertext hides $$\varvec{y}$$y and $$\varvec{z}$$z, although it is not required to hide $$\varvec{x}$$x. Thus $$\varvec{x}$$x can be seen as a public attribute.D-restricted FE allows for useful evaluation of constant-degree polynomials, while only requiring the SXDH assumption over bilinear groups. As such, it is a powerful tool for leveraging hardness that exists in constant-degree expanding families of polynomials over $$\mathbb {R}$$R. In particular, we build upon the work of Ananth et al. to show how to build indistinguishability obfuscation ($$i\mathcal {O}$$iO) assuming only SXDH over bilinear groups, LWE, and assumptions relating to weak pseudorandom properties of constant-degree expanding polynomials over $$\mathbb {R}$$R.

2019

EUROCRYPT

Non-Malleable Codes Against Bounded Polynomial Time Tampering
📺
Abstract

We construct efficient non-malleable codes (NMC) that are (computationally) secure against tampering by functions computable in any fixed polynomial time. Our construction is in the plain (no-CRS) model and requires the assumptions that (1) $$\mathbf {E}$$E is hard for $$\mathbf {NP}$$NP circuits of some exponential $$2^{\beta n}$$2βn ($$\beta >0$$β>0) size (widely used in the derandomization literature), (2) sub-exponential trapdoor permutations exist, and (3) $$\mathbf {P}$$P-certificates with sub-exponential soundness exist.While it is impossible to construct NMC secure against arbitrary polynomial-time tampering (Dziembowski, Pietrzak, Wichs, ICS ’10), the existence of NMC secure against $$O(n^c)$$O(nc)-time tampering functions (for any fixedc), was shown (Cheraghchi and Guruswami, ITCS ’14) via a probabilistic construction. An explicit construction was given (Faust, Mukherjee, Venturi, Wichs, Eurocrypt ’14) assuming an untamperable CRS with length longer than the runtime of the tampering function. In this work, we show that under computational assumptions, we can bypass these limitations. Specifically, under the assumptions listed above, we obtain non-malleable codes in the plain model against $$O(n^c)$$O(nc)-time tampering functions (for any fixed c), with codeword length independent of the tampering time bound.Our new construction of NMC draws a connection with non-interactive non-malleable commitments. In fact, we show that in the NMC setting, it suffices to have a much weaker notion called quasi non-malleable commitments—these are non-interactive, non-malleable commitments in the plain model, in which the adversary runs in $$O(n^c)$$O(nc)-time, whereas the honest parties may run in longer (polynomial) time. We then construct a 4-tag quasi non-malleable commitment from any sub-exponential OWF and the assumption that $$\mathbf {E}$$E is hard for some exponential size $$\mathbf {NP}$$NP-circuits, and use tag amplification techniques to support an exponential number of tags.

2019

CRYPTO

Indistinguishability Obfuscation Without Multilinear Maps: New Paradigms via Low Degree Weak Pseudorandomness and Security Amplification
📺
Abstract

The existence of secure indistinguishability obfuscators (
$$i\mathcal {O}$$
) has far-reaching implications, significantly expanding the scope of problems amenable to cryptographic study. All known approaches to constructing
$$i\mathcal {O}$$
rely on d-linear maps. While secure bilinear maps are well established in cryptographic literature, the security of candidates for
$$d>2$$
is poorly understood.We propose a new approach to constructing
$$i\mathcal {O}$$
for general circuits. Unlike all previously known realizations of
$$i\mathcal {O}$$
, we avoid the use of d-linear maps of degree
$$d \ge 3$$
.At the heart of our approach is the assumption that a new weak pseudorandom object exists. We consider two related variants of these objects, which we call perturbation resilient generator (
$$\varDelta $$
RG) and pseudo flawed-smudging generator (
$$\mathrm {PFG}$$
), respectively. At a high level, both objects are polynomially expanding functions whose outputs partially hide (or smudge) small noise vectors when added to them. We further require that they are computable by a family of degree-3 polynomials over
$$\mathbb {Z}$$
. We show how they can be used to construct functional encryption schemes with weak security guarantees. Finally, we use novel amplification techniques to obtain full security.As a result, we obtain
$$i\mathcal {O}$$
for general circuits assuming:Subexponentially secure LWEBilinear Maps
$$\mathrm {poly}(\lambda )$$
-secure 3-block-local PRGs
$$\varDelta $$
RGs or
$$\mathrm {PFG}$$
s

2018

EUROCRYPT

2018

TCC

Two-Round Adaptively Secure Multiparty Computation from Standard Assumptions
Abstract

We present the first two-round multiparty computation (MPC) protocols secure against malicious adaptive corruption in the common reference string (CRS) model, based on DDH, LWE, or QR. Prior two-round adaptively secure protocols were known only in the two-party setting against semi-honest adversaries, or in the general multiparty setting assuming the existence of indistinguishability obfuscation (iO).Our protocols are constructed in two steps. First, we construct two-round oblivious transfer (OT) protocols secure against malicious adaptive corruption in the CRS model based on DDH, LWE, or QR. We achieve this by generically transforming any two-round OT that is only secure against static corruption but has certain oblivious sampleability properties, into a two-round adaptively secure OT. Prior constructions were only secure against semi-honest adversaries or based on iO.Second, building upon recent constructions of two-round MPC from two-round OT in the weaker static corruption setting [Garg and Srinivasan, Benhamouda and Lin, Eurocrypt’18] and using equivocal garbled circuits from [Canetti, Poburinnaya and Venkitasubramaniam, STOC’17], we show how to construct two-round adaptively secure MPC from two-round adaptively secure OT and constant-round adaptively secure MPC, with respect to both malicious and semi-honest adversaries. As a corollary, we also obtain the first 2-round MPC secure against semi-honest adaptive corruption in the plain model based on augmented non-committing encryption (NCE), which can be based on a variety of assumptions, CDH, RSA, DDH, LWE, or factoring Blum integers. Finally, we mention that our OT and MPC protocols in the CRS model are, in fact, adaptively secure in the Universal Composability framework.

2018

TCC

One-Message Zero Knowledge and Non-malleable Commitments
Abstract

We introduce a new notion of one-message zero-knowledge (1ZK) arguments that satisfy a weak soundness guarantee—the number of false statements that a polynomial-time non-uniform adversary can convince the verifier to accept is not much larger than the size of its non-uniform advice. The zero-knowledge guarantee is given by a simulator that runs in (mildly) super-polynomial time. We construct such 1ZK arguments based on the notion of multi-collision-resistant keyless hash functions, recently introduced by Bitansky, Kalai, and Paneth (STOC 2018). Relying on the constructed 1ZK arguments, subexponentially-secure time-lock puzzles, and other standard assumptions, we construct one-message fully-concurrent non-malleable commitments. This is the first construction that is based on assumptions that do not already incorporate non-malleability, as well as the first based on (subexponentially) falsifiable assumptions.

#### Program Committees

- TCC 2020
- Eurocrypt 2019
- Crypto 2017
- TCC 2016
- Crypto 2015
- Crypto 2013

#### Coauthors

- Prabhanjan Ananth (2)
- Marshall Ball (1)
- Fabrice Benhamouda (3)
- Nir Bitansky (6)
- Ran Canetti (4)
- Yu-Chi Chen (1)
- Binyi Chen (2)
- Alessandro Chiesa (2)
- Kai-Min Chung (2)
- Dana Dachman-Soled (2)
- Sanjam Garg (1)
- Shafi Goldwasser (2)
- Vipul Goyal (1)
- Shai Halevi (1)
- Aayush Jain (2)
- Susumu Kiyoshima (1)
- Mukul Kulkarni (1)
- Wei-Kai Lin (1)
- Tianren Liu (1)
- Ji Luo (1)
- Tal Malkin (1)
- Christian Matt (2)
- Omkant Pandey (1)
- Omer Paneth (2)
- Rafael Pass (11)
- Antigoni Polychroniadou (1)
- Aviad Rubinstein (2)
- Amit Sahai (3)
- Karn Seth (3)
- Sidharth Telang (4)
- Stefano Tessaro (5)
- Eran Tromer (2)
- Wei-Lung Dustin Tseng (1)
- Vinod Vaikuntanathan (1)
- Muthuramakrishnan Venkitasubramaniam (5)
- Hoeteck Wee (1)