International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Patrick Derbez

Affiliation: Université Rennes, CNRS and IRISA, France

Publications

Year
Venue
Title
2019
TOSC
Efficient Search for Optimal Diffusion Layers of Generalized Feistel Networks
The Feistel construction is one of the most studied ways of building block ciphers. Several generalizations were then proposed in the literature, leading to the Generalized Feistel Network, where the round function first applies a classical Feistel operation in parallel on an even number of blocks, and then a permutation is applied to this set of blocks. In 2010 at FSE, Suzaki and Minematsu studied the diffusion of such construction, raising the question of how many rounds are required so that each block of the ciphertext depends on all blocks of the plaintext. They thus gave some optimal permutations, with respect to this diffusion criteria, for a Generalized Feistel Network consisting of 2 to 16 blocks, as well as giving a good candidate for 32 blocks. Later at FSE’19, Cauchois et al. went further and were able to propose optimal even-odd permutations for up to 26 blocks.In this paper, we complete the literature by building optimal even-odd permutations for 28, 30, 32, 36 blocks which to the best of our knowledge were unknown until now. The main idea behind our constructions and impossibility proof is a new characterization of the total diffusion of a permutation after a given number of rounds. In fact, we propose an efficient algorithm based on this new characterization which constructs all optimal even-odd permutations for the 28, 30, 32, 36 blocks cases and proves a better lower bound for the 34, 38, 40 and 42 blocks cases. In particular, we improve the 32 blocks case by exhibiting optimal even-odd permutations with diffusion round of 9. The existence of such a permutation was an open problem for almost 10 years and the best known permutation in the literature had a diffusion round of 10. Moreover, our characterization can be implemented very efficiently and allows us to easily re-find all optimal even-odd permutations for up to 26 blocks with a basic exhaustive search
2018
JOFC
2018
TCHES
On Recovering Affine Encodings in White-Box Implementations
Ever since the first candidate white-box implementations by Chow et al. in 2002, producing a secure white-box implementation of AES has remained an enduring challenge. Following the footsteps of the original proposal by Chow et al., other constructions were later built around the same framework. In this framework, the round function of the cipher is “encoded” by composing it with non-linear and affine layers known as encodings. However, all such attempts were broken by a series of increasingly efficient attacks that are able to peel off these encodings, eventually uncovering the underlying round function, and with it the secret key.These attacks, however, were generally ad-hoc and did not enjoy a wide applicability. As our main contribution, we propose a generic and efficient algorithm to recover affine encodings, for any Substitution-Permutation-Network (SPN) cipher, such as AES, and any form of affine encoding. For AES parameters, namely 128-bit blocks split into 16 parallel 8-bit S-boxes, affine encodings are recovered with a time complexity estimated at 232 basic operations, independently of how the encodings are built. This algorithm is directly applicable to a large class of schemes. We illustrate this on a recent proposal due to Baek, Cheon and Hong, which was not previously analyzed. While Baek et al. evaluate the security of their scheme to 110 bits, a direct application of our generic algorithm is able to break the scheme with an estimated time complexity of only 235 basic operations.As a second contribution, we show a different approach to cryptanalyzing the Baek et al. scheme, which reduces the analysis to a standalone combinatorial problem, ultimately achieving key recovery in time complexity 231. We also provide an implementation of the attack, which is able to recover the secret key in about 12 seconds on a standard desktop computer.
2018
ASIACRYPT
Programming the Demirci-Selçuk Meet-in-the-Middle Attack with Constraints
Cryptanalysis with SAT/SMT, MILP and CP has increased in popularity among symmetric-key cryptanalysts and designers due to its high degree of automation. So far, this approach covers differential, linear, impossible differential, zero-correlation, and integral cryptanalysis. However, the Demirci-Selçuk meet-in-the-middle ($$\mathcal {DS}$$-$$\mathsf {MITM}$$) attack is one of the most sophisticated techniques that has not been automated with this approach. By an in-depth study of Derbez and Fouque’s work on $$\mathcal {DS}$$-$$\mathsf {MITM}$$ analysis with dedicated search algorithms, we identify the crux of the problem and present a method for automatic $$\mathcal {DS}$$-$$\mathsf {MITM}$$ attack based on general constraint programming, which allows the cryptanalysts to state the problem at a high level without having to say how it should be solved. Our method is not only able to enumerate distinguishers but can also partly automate the key-recovery process. This approach makes the $$\mathcal {DS}$$-$$\mathsf {MITM}$$ cryptanalysis more straightforward and easier to follow, since the resolution of the problem is delegated to off-the-shelf constraint solvers and therefore decoupled from its formulation. We apply the method to SKINNY, TWINE, and LBlock, and we get the currently known best $$\mathcal {DS}$$-$$\mathsf {MITM}$$ attacks on these ciphers. Moreover, to demonstrate the usefulness of our tool for the block cipher designers, we exhaustively evaluate the security of $$8! = 40320$$ versions of LBlock instantiated with different words permutations in the F functions. It turns out that the permutation used in the original LBlock is one of the 64 permutations showing the strongest resistance against the $$\mathcal {DS}$$-$$\mathsf {MITM}$$ attack. The whole process is accomplished on a PC in less than 2 h. The same process is applied to TWINE, and similar results are obtained.
2018
TOSC
Cryptanalysis of AES-PRF and Its Dual
A dedicated pseudorandom function (PRF) called AES-PRF was proposed by Mennink and Neves at FSE 2018 (ToSC 2017, Issue 3). AES-PRF is obtained from AES by using the output of the 5-th round as the feed-forward to the output state. This paper presents extensive security analysis of AES-PRF and its variants. Specifically, we consider unbalanced variants where the output of the s-th round is used as the feed-forward. We also analyze the security of “dual” constructions of the unbalanced variants, where the input state is used as the feed-forward to the output of the s-th round. We apply an impossible differential attack, zero-correlation linear attack, traditional differential attack, zero correlation linear distinguishing attack and a meet-in-the-middle attack on these PRFs and reduced round versions. We show that AES-PRF is broken whenever s ≤ 2 or s ≥ 6, or reduced to 7 rounds, and Dual-AES-PRF is broken whenever s ≤ 4 or s ≥ 8. Our results on AES-PRF improve the initial security evaluation by the designers in various ways, and our results on Dual-AES-PRF give the first insight to its security.
2016
CRYPTO
2016
FSE
2015
EPRINT
2015
EPRINT
2015
EPRINT
2015
EPRINT
2015
FSE
2015
FSE
2015
ASIACRYPT
2013
EUROCRYPT
2013
FSE
2011
CRYPTO
2011
CHES

Program Committees

FSE 2020
FSE 2019
FSE 2018
FSE 2017