International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Brice Minaud

Affiliation: Inria and ENS, France

Publications

Year
Venue
Title
2018
JOFC
2018
TCHES
On Recovering Affine Encodings in White-Box Implementations
Ever since the first candidate white-box implementations by Chow et al. in 2002, producing a secure white-box implementation of AES has remained an enduring challenge. Following the footsteps of the original proposal by Chow et al., other constructions were later built around the same framework. In this framework, the round function of the cipher is “encoded” by composing it with non-linear and affine layers known as encodings. However, all such attempts were broken by a series of increasingly efficient attacks that are able to peel off these encodings, eventually uncovering the underlying round function, and with it the secret key.These attacks, however, were generally ad-hoc and did not enjoy a wide applicability. As our main contribution, we propose a generic and efficient algorithm to recover affine encodings, for any Substitution-Permutation-Network (SPN) cipher, such as AES, and any form of affine encoding. For AES parameters, namely 128-bit blocks split into 16 parallel 8-bit S-boxes, affine encodings are recovered with a time complexity estimated at 232 basic operations, independently of how the encodings are built. This algorithm is directly applicable to a large class of schemes. We illustrate this on a recent proposal due to Baek, Cheon and Hong, which was not previously analyzed. While Baek et al. evaluate the security of their scheme to 110 bits, a direct application of our generic algorithm is able to break the scheme with an estimated time complexity of only 235 basic operations.As a second contribution, we show a different approach to cryptanalyzing the Baek et al. scheme, which reduces the analysis to a standalone combinatorial problem, ultimately achieving key recovery in time complexity 231. We also provide an implementation of the attack, which is able to recover the secret key in about 12 seconds on a standard desktop computer.
2018
ASIACRYPT
Cryptanalysis of MORUS
MORUS is a high-performance authenticated encryption algorithm submitted to the CAESAR competition, and recently selected as a finalist. There are three versions of MORUS: MORUS-640 with a 128-bit key, and MORUS-1280 with 128-bit or 256-bit keys. For all versions the security claim for confidentiality matches the key size. In this paper, we analyze the components of this algorithm (initialization, state update and tag generation), and report several results.As our main result, we present a linear correlation in the keystream of full MORUS, which can be used to distinguish its output from random and to recover some plaintext bits in the broadcast setting. For MORUS-1280, the correlation is $$2^{-76}$$, which can be exploited after around $$2^{152}$$ encryptions, less than what would be expected for a 256-bit secure cipher. For MORUS-640, the same attack results in a correlation of $$2^{-73}$$, which does not violate the security claims of the cipher.To identify this correlation, we make use of rotational invariants in MORUS using linear masks that are invariant by word-rotations of the state. This motivates us to introduce single-word versions of MORUS called MiniMORUS, which simplifies the analysis. The attack has been implemented and verified on MiniMORUS, where it yields a correlation of $$2^{-16}$$.We also study reduced versions of the initialization and finalization of MORUS, aiming to evaluate the security margin of these components. We show a forgery attack when finalization is reduced from 10 steps to 3, and a key-recovery attack in the nonce-misuse setting when initialization is reduced from 16 steps to 10. These additional results do not threaten the full MORUS, but studying all aspects of the design is useful to understand its strengths and weaknesses.
2016
EUROCRYPT
2016
ASIACRYPT
2015
EPRINT
2015
EPRINT
2015
EPRINT
2015
EPRINT
2015
EUROCRYPT
2015
CRYPTO
2015
ASIACRYPT
2014
FSE

Program Committees

FSE 2020
Asiacrypt 2019
Asiacrypt 2018