CryptoDB
Baptiste Germon
Publications and invited talks
Year
Venue
Title
2025
TOSC
Extending the Quasidifferential Framework: From Fixed-Key to Expected Differential Probability
Abstract
Beyne and Rijmen proposed in 2022 a systematic and generic framework to study the fixed-key probability of differential characteristics. One of the main challenges for implementing this framework is the ability to efficiently handle very large quasidifferential transition matrices (QDTMs) for big (e.g. 8-bit) S-boxes. Our first contribution is a new MILP model capable of efficiently representing such matrices, by exploiting the inherent block structure of these objects. We then propose two extensions to the original framework. First, we demonstrate how to adapt the framework to the related-key setting. Next, we present a novel approach to compute the average expected probability of a differential characteristic that takes the key schedule into account. This method, applicable to both linear and non-linear key schedules, works in both the single-key and related-key settings. Furthermore, it provides a faster way to verify the validity of characteristics compared to computing the fixed-key probability. Using these extensions and our MILP model, we analyze various (related-key) differential characteristics from the literature. First, we prove the validity of several optimal related-key differential characteristics of AES. Next, we show that this approach permits to obtain more precise results than methods relying on key constraints for SKINNY. Finally, we examine the validity of a differential distinguisher used in two differential meet-in-the-middle attacks on SKINNY-128, demonstrating that its probability is significantly higher than initially estimated.
2025
ASIACRYPT
SPEEDY: Caught at Last
Abstract
SPEEDY is a family of ultra-low-latency block ciphers designed by Leander et al. in 2021. In 2023, Boura et al. proposed a differential attack on the full 7-round variant, SPEEDY-7-192. However, shortly thereafter, Beyne and Neyt demonstrated that this attack was invalid, as the dominant differential characteristic it relied upon had probability zero. A similar issue affects another differential attack proposed the same year by Wang et al., which also targets SPEEDY-7-192 and suffers from the same flaw. As a result, although SPEEDY-7-192 was initially believed to be broken, it remained unbroken in practice, and the question of finding a valid attack on this cipher remained an open problem. In this work, we resolve this problem by presenting the first valid differential attack on SPEEDY-7-192. We verify the validity of our distinguisher using the quasidifferential framework. Moreover, our search for the differential distinguisher is significantly more rigorous than in the previous works, allowing us to explore a larger portion of the search space. We also fully exploit probabilistic extensions of the distinguisher to identify optimal parameters for the key recovery step. Our attack on SPEEDY-7-192 has data and time complexities of 2^{186.36} encryption calls and a memory complexity of 2^{84} 192-bit states. In addition, we present differential attacks on 4-round SPEEDY-5-192 and 5-round SPEEDY-6-192 which currently represent the best attacks against these smaller variants.
Coauthors
- Christina Boura (2)
- Patrick Derbez (2)
- Baptiste Germon (2)
- Rachelle Heim Boissier (1)
- María Naya-Plasencia (1)