International Association for Cryptologic Research

International Association
for Cryptologic Research


Wouter Castryck


Rational isogenies from irrational endomorphisms 📺
In this paper, we introduce a polynomial-time algorithm to compute a connecting $\mathcal{O}$-ideal between two supersingular elliptic curves over $\mathbb{F}_p$ with common $\mathbb{F}_p$-endomorphism ring $\mathcal{O}$, given a description of their full endomorphism rings. This algorithm provides a reduction of the security of the CSIDH cryptosystem to the problem of computing endomorphism rings of supersingular elliptic curves. A similar reduction for SIDH appeared at Asiacrypt 2016, but relies on totally different techniques. Furthermore, we also show that any supersingular elliptic curve constructed using the complex-multiplication method can be located precisely in the supersingular isogeny graph by explicitly deriving a path to a known base curve. This result prohibits the use of such curves as a building block for a hash function into the supersingular isogeny graph.
Breaking the decisional Diffie-Hellman problem for class group actions using genus theory
In this paper, we use genus theory to analyze the hardness of the decisional Diffie--Hellman problem (DDH) for ideal class groups of imaginary quadratic orders, acting on sets of elliptic curves through isogenies; such actions are used in the Couveignes--Rostovtsev--Stolbunov protocol and in CSIDH. Concretely, genus theory equips every imaginary quadratic order $\mathcal{O}$ with a set of assigned characters $\chi : \text{cl}(\mathcal{O}) \to \{ \pm 1 \}$, and for each such character and every secret ideal class $[\mathfrak{a}]$ connecting two public elliptic curves $E$ and $E' = [\mathfrak{a}] \star E$, we show how to compute $\chi([\mathfrak{a}])$ given only $E$ and $E'$, i.e., without knowledge of $[\mathfrak{a}]$. In practice, this breaks DDH as soon as the class number is even, which is true for a density $1$ subset of all imaginary quadratic orders. For instance, our attack works very efficiently for all supersingular elliptic curves over $\mathbb{F}_p$ with $p \equiv 1 \bmod 4$. Our method relies on computing Tate pairings and walking down isogeny volcanoes.
Radical Isogenies 📺
This paper introduces a new approach to computing isogenies called ``radical isogenies'' and a corresponding method to compute chains of $N$-isogenies that is very efficient for small $N$. The method is fully deterministic and completely avoids generating $N$-torsion points. It is based on explicit formulae for the coordinates of an $N$-torsion point $P'$ on the codomain of a cyclic $N$-isogeny $\varphi : E \to E'$, such that composing $\varphi$ with $E' \to E' / \langle P' \rangle$ yields a cyclic $N^2$-isogeny. These formulae are simple algebraic expressions in the coefficients of $E$, the coordinates of a generator $P$ of $\ker \varphi$, and an $N$th root $\sqrtN{\rho}$, where the radicand $\rho$ itself is given by an easily computable algebraic expression in the coefficients of $E$ and the coordinates of $P$. The formulae can be iterated and are particularly useful when computing chains of $N$-isogenies over a finite field $\F_q$ with $\gcd(q-1, N) = 1$, where taking an $N$th root is a simple exponentiation. Compared to the state-of-the-art, our method results in an order of magnitude speed-up for $N \leq 13$; for larger $N$, the advantage disappears due to the increasing complexity of the formulae. When applied to CSIDH, we obtain a speed-up of about $19 \%$ over the implementation by Bernstein, De Feo, Leroux and Smith for the CSURF-512 parameters.
CSIDH: An Efficient Post-Quantum Commutative Group Action
We propose an efficient commutative group action suitable for non-interactive key exchange in a post-quantum setting. Our construction follows the layout of the Couveignes–Rostovtsev–Stolbunov cryptosystem, but we apply it to supersingular elliptic curves defined over a large prime field $$\mathbb F_p$$, rather than to ordinary elliptic curves. The Diffie–Hellman scheme resulting from the group action allows for public-key validation at very little cost, runs reasonably fast in practice, and has public keys of only 64 bytes at a conjectured AES-128 security level, matching NIST’s post-quantum security category I.
Faster Homomorphic Function Evaluation Using Non-integral Base Encoding
In this paper we present an encoding method for real numbers tailored for homomorphic function evaluation. The choice of the degree of the polynomial modulus used in all popular somewhat homomorphic encryption schemes is dominated by security considerations, while with the current encoding techniques the correctness requirement allows for much smaller values. We introduce a generic encoding method using expansions with respect to a non-integral base, which exploits this large degree at the benefit of reducing the growth of the coefficients when performing homomorphic operations. This allows one to choose a smaller plaintext coefficient modulus which results in a significant reduction of the running time. We illustrate our approach by applying this encoding in the setting of homomorphic electricity load forecasting for the smart grid which results in a speed-up by a factor 13 compared to previous work, where encoding was done using balanced ternary expansions.
Efficient arithmetic on elliptic curves using a mixed Edwards-Montgomery representation
From the viewpoint of x-coordinate-only arithmetic on elliptic curves, switching between the Edwards model and the Montgomery model is quasi cost-free. We use this observation to speed up Montgomery's algorithm, reducing the complexity of a doubling step from 2M + 2S to 1M + 3S for suitably chosen curve parameters.
Computing Zeta Functions of Nondegenerate Curves
W. Castryck J. Denef F. Vercauteren
In this paper we present a $p$-adic algorithm to compute the zeta function of a nondegenerate curve over a finite field using Monsky-Washnitzer cohomology. The paper vastly generalizes previous work since all known cases, e.g. hyperelliptic, superelliptic and $C_{ab}$ curves, can be transformed to fit the nondegenerate case. For curves with a fixed Newton polytope, the property of being nondegenerate is generic, so that the algorithm works for almost all curves with given Newton polytope. For a genus $g$ curve over $\FF_{p^n}$, the expected running time is $\widetilde{O}(n^3 g^6 + n^2 g^{6.5})$, whereas the space complexity amounts to $\widetilde{O}(n^3 g^4)$, assuming $p$ is fixed.