International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Andrea Basso

ORCID: 0000-0002-3270-1069

Publications

Year
Venue
Title
2023
EUROCRYPT
Supersingular Curves You can Trust
Generating a supersingular elliptic curve such that nobody knows its endomorphism ring is a notoriously hard task, despite several isogeny-based protocols relying on such an object. A trusted setup is often proposed as a workaround, but several aspects remain unclear. In this work, we develop the tools necessary to practically run such a distributed trusted-setup ceremony. Our key contribution is the first statistically zero-knowledge proof of isogeny knowledge that is compatible with any base field. To prove statistical ZK, we introduce isogeny graphs with Borel level structure and prove they have the Ramanujan property. Then, we analyze the security of a distributed trusted-setup protocol based on our ZK proof in the simplified universal composability framework. Lastly, we develop an optimized implementation of the ZK proof, and we propose a strategy to concretely deploy the trusted-setup protocol.
2023
TCHES
Kavach: Lightweight masking techniques for polynomial arithmetic in lattice-based cryptography
Lattice-based cryptography has laid the foundation of various modern-day cryptosystems that cater to several applications, including post-quantum cryptography. For structured lattice-based schemes, polynomial arithmetic is a fundamental part. In several instances, the performance optimizations come from implementing compact multipliers due to the small range of the secret polynomial coefficients. However, this optimization does not easily translate to side-channel protected implementations since masking requires secret polynomial coefficients to be distributed over a large range. In this work, we address this problem and propose two novel generalized techniques, one for the number theoretic transform (NTT) based and another for the non-NTT-based polynomial arithmetic. Both these proposals enable masked polynomial multiplication while utilizing and retaining the small secret property.For demonstration, we used the proposed technique and instantiated masked multipliers for schoolbook as well as NTT-based polynomial multiplication. Both of these can utilize the compact multipliers used in the unmasked implementations. The schoolbook multiplication requires an extra polynomial accumulation along with the two polynomial multiplications for a first-order protected implementation. However, this cost is nothing compared to the area saved by utilizing the existing cheap multiplication units. We also extensively test the side-channel resistance of the proposed design through TVLA to guarantee its first-order security.
2023
ASIACRYPT
FESTA: Fast Encryption from Supersingular Torsion Attacks
We introduce FESTA, an efficient isogeny-based public-key encryption (PKE) protocol based on a constructive application of the SIDH attacks. At its core, FESTA is based on a novel trapdoor function, which uses an improved version of the techniques proposed in the SIDH attacks to develop a trapdoor mechanism. Using standard transformations, we construct an efficient PKE that is IND-CCA secure in the QROM. Additionally, using a different transformation, we obtain the first isogeny-based PKE that is IND-CCA secure in the standard model. Lastly, we propose a method to efficiently find parameters for FESTA, and we develop a proof-of-concept implementation of the protocol. We expect FESTA to offer practical performance that is competitive with existing isogeny-based constructions.
2023
ASIACRYPT
New SIDH Countermeasures for a More Efficient Key Exchange
Andrea Basso Tako Boris Fouotsa
The Supersingular Isogeny Diffie-Hellman (SIDH) protocol has been the main and most efficient isogeny-based encryption protocol, until a series of breakthroughs led to a polynomial-time key-recovery attack. While some countermeasures have been proposed, the resulting schemes are significantly slower and larger than the original SIDH. In this work, we propose a new countermeasure technique that leads to significantly more efficient and compact protocols. To do so, we introduce the concept of artificially oriented curves, i.e. curves with an associated pair of subgroups. We show that this information is sufficient to build parallel isogenies and thus obtain an SIDH-like key exchange, while also revealing significantly less information compared to previous constructions. After introducing artificially oriented curves, we formalize several related computational problems and thoroughly assess their presumed hardness. We then translate the SIDH key exchange to the artificially oriented setting, obtaining the key-exchange protocols binSIDH, or binary SIDH, and terSIDH, or ternary SIDH, which respectively rely on fixed-degree and variable-degree isogenies. Lastly, we also provide a proof-of-concept implementation of the proposed protocols. Despite being a high-level SageMath implementation, it already outperforms existing implementations of other isogeny-based encryption schemes, which suggests that terSIDH might be the most efficient isogeny-based encryption protocol.
2021
ASIACRYPT
Cryptanalysis of an oblivious PRF from supersingular isogenies 📺
We cryptanalyse the SIDH-based oblivious pseudorandom function from supersingular isogenies proposed at Asiacrypt'20 by Boneh, Kogan and Woo. To this end, we give an attack on an assumption, the auxiliary one-more assumption, that was introduced by Boneh et al. and we show that this leads to an attack on the oblivious PRF itself. The attack breaks the pseudorandomness as it allows adversaries to evaluate the OPRF without further interactions with the server after some initial OPRF evaluations and some offline computations. More specifically, we first propose a polynomial-time attack. Then, we argue it is easy to change the OPRF protocol to include some countermeasures, and present a second subexponential attack that succeeds in the presence of said countermeasures. Both attacks break the security parameters suggested by Boneh et al. Furthermore, we provide a proof of concept implementation as well as some timings of our attack. Finally, we examine the generation of one of the OPRF parameters and argue that a trusted third party is needed to guarantee provable security.
2020
TCHES
High-speed Instruction-set Coprocessor for Lattice-based Key Encapsulation Mechanism: Saber in Hardware 📺
Sujoy Sinha Roy Andrea Basso
In this paper, we present an instruction set coprocessor architecture for lattice-based cryptography and implement the module lattice-based post-quantum key encapsulation mechanism (KEM) Saber as a case study. To achieve fast computation time, the architecture is fully implemented in hardware, including CCA transformations. Since polynomial multiplication plays a performance-critical role in the module and ideal lattice-based public-key cryptography, a parallel polynomial multiplier architecture is proposed that overcomes memory access bottlenecks and results in a highly parallel yet simple and easy-to-scale design. Such multipliers can compute a full multiplication in 256 cycles, but are designed to target any area/performance trade-offs. Besides optimizing polynomial multiplication, we make important design decisions and perform architectural optimizations to reduce the overall cycle counts as well as improve resource utilization. For the module dimension 3 (security comparable to AES-192), the coprocessor computes CCA key generation, encapsulation, and decapsulation in only 5,453, 6,618 and 8,034 cycles respectively, making it the fastest hardware implementation of Saber to our knowledge. On a Xilinx UltraScale+ XCZU9EG-2FFVB1156 FPGA, the entire instruction set coprocessor architecture runs at 250 MHz clock frequency and consumes 23,686 LUTs, 9,805 FFs, and 2 BRAM tiles (including 5,113 LUTs and 3,068 FFs for the Keccak core).

Program Committees

Asiacrypt 2023