International Association for Cryptologic Research

International Association
for Cryptologic Research


Joël Felderhoff


Ideal-SVP is Hard for Small-Norm Uniform Prime Ideals
The presumed hardness of the Shortest Vector Problem for ideal lattices (Ideal-SVP) has been a fruitful assumption to understand other assumptions on algebraic lattices and as a security foundation of cryptosystems. Gentry [CRYPTO’10] proved that Ideal-SVP enjoys a worst-case to average-case reduction, where the average-case distribution is the uniform distribution over the set of inverses of prime ideals of small algebraic norm (below d^O(d) for cyclotomic fields, where d refers to the field degree). De Boer et al. [CRYPTO’20] btained another random self-reducibility result for an average-case distribution involving integral ideals of norm 2^O(d^2). In this work, we show that Ideal-SVP for the uniform distribution over inverses of small-norm prime ideals reduces to Ideal-SVP for the uniform distribution over small-norm prime ideals. Combined with Gentry’s reduction, this leads to a worst-case to average-case reduction for the uniform distribution over the set of small-norm prime ideals. Using the reduction from Pellet-Mary and Stehlé [ASIACRYPT’21], this notably leads to the first distribution over NTRU instances with a polynomial modulus whose hardness is supported by a worst-case lattice problem.
On Module Unique-SVP and NTRU 📺
The NTRU problem can be viewed as an instance of finding a short non-zero vector in a lattice, under the promise that it contains an exceptionally short vector. Further, the lattice under scope has the structure of a rank-2 module over the ring of integers of a number field. Let us refer to this problem as the module unique Shortest Vector Problem,or mod-uSVP for short. We exhibit two reductions that together provide evidence the NTRU problem is not just a particular case of mod-uSVP, but representative of it from a computational perspective. First, we reduce worst-case mod-uSVP to worst-case NTRU. For this, we rely on an oracle for id-SVP, the problem of finding short non-zero vectors in ideal lattices. Using the worst-case id-SVP to worst-case NTRU reduction from Pellet-Mary and Stehlé [ASIACRYPT'21],this shows that worst-case NTRU is equivalent to worst-case mod-uSVP. Second, we give a random self-reduction for mod-uSVP. We put forward a distribution D over mod-uSVP instances such that solving mod-uSVP with a non-negligible probability for samples from D allows to solve mod-uSVP in the worst-case. With the first result, this gives a reduction from worst-case mod-uSVP to an average-case version of NTRU where the NTRU instance distribution is inherited from D. This worst-case to average-case reduction requires an oracle for id-SVP.