International Association for Cryptologic Research

International Association
for Cryptologic Research


Lorenz Panny


SCALLOP-HD: group action from 2-dimensional isogenies
We present SCALLOP-HD, a novel group action that builds upon the recent SCALLOP group action introduced by De Feo, Fouotsa, Kutas, Leroux, Merz, Panny and Wesolowski in 2023. While our group action uses the same action of the class group $\textnormal{Cl}(\mathfrak{O})$ on $\mathfrak{O}$-oriented curves where $\mathfrak{O} = \mathbb{Z}[f\sqrt{-d}]$ for a large prime $f$ and small $d$ as SCALLOP, we introduce a different orientation representation: The new representation embeds an endomorphism generating $\mathfrak{O}$ in a $2^e$-isogeny between abelian varieties of dimension $2$ with Kani's Lemma, and this representation comes with a simple algorithm to compute the class group action. Our new approach considerably simplifies the SCALLOP framework, potentially surpassing it in efficiency — a claim supported by preliminary implementation results in SageMath. Additionally, our approach streamlines parameter selection. The new representation allows us to select efficiently a class group $\textnormal{Cl}(\mathfrak{O})$ of smooth order, enabling polynomial-time generation of the lattice of relation, hence enhancing scalability in contrast to SCALLOP. To instantiate our SCALLOP-HD group action, we introduce a new technique to apply Kani's Lemma in dimension 2 with an isogeny diamond obtained from commuting endomorphisms. This method allows one to represent arbitrary endomorphisms with isogenies in dimension 2, and may be of independent interest.
Isogeny problems with level structure
Given two elliptic curves and the degree of an isogeny between them, finding the isogeny is believed to be a difficult problem—upon which rests the security of nearly any isogeny-based scheme. If, however, to the data above we add information about the behavior of the isogeny on a large enough subgroup, the problem can become easy, as recent cryptanalyses on SIDH have shown. Between the restriction of the isogeny to a full N‑torsion subgroup and no "torsion information" at all lies a spectrum of interesting intermediate problems, raising the question of how easy or hard each of them is. Here we explore modular isogeny problems where the torsion information is masked by the action of a group of 2×2 matrices. We give reductions between these problems, classify them by their difficulty, and link them to security assumptions found in the literature.
SCALLOP: scaling the CSI-FiSh
We present SCALLOP: SCALable isogeny action based on Oriented supersingular curves with Prime conductor, a new group action based on isogenies of supersingular curves. Similarly to CSIDH and OSIDH, we use the group action of an imaginary quadratic order's class group on the set of oriented supersingular curves. Compared to CSIDH, the main benefit of our construction is that it is easy to compute the class-group structure; this data is required to uniquely represent - and efficiently act by - arbitrary group elements, which is a requirement in, e.g., the CSI-FiSh signature scheme by Beullens, Kleinjung and Vercauteren. The index-calculus algorithm used in CSI-FiSh to compute the class-group structure has complexity $L(1/2)$, ruling out class groups much larger than CSIDH-512, a limitation that is particularly problematic in light of the ongoing debate regarding the quantum security of cryptographic group actions. Hoping to solve this issue, we consider the class group of a quadratic order of large prime conductor inside an imaginary quadratic field of small discriminant. This family of quadratic orders lets us easily determine the size of the class group, and, by carefully choosing the conductor, even exercise significant control on it - in particular supporting highly smooth choices. Although evaluating the resulting group action still has subexponential asymptotic complexity, a careful choice of parameters leads to a practical speedup that we demonstrate in practice for a security level equivalent to CSIDH-1024, a parameter currently firmly out of reach of index-calculus-based methods. However, our implementation takes 35 seconds (resp. 12.5 minutes) for a single group-action evaluation at a CSIDH-512-equivalent (resp. CSIDH-1024-equivalent) security level, showing that, while feasible, the SCALLOP group action does not achieve realistically usable performance yet.
A Direct Key Recovery Attack on SIDH
We present an attack on SIDH utilising isogenies between polarized products of two supersingular elliptic curves. In the case of arbitrary starting curve, our attack (discovered independently from [8]) has subexponential complexity, thus significantly reducing the security of SIDH and SIKE. When the endomorphism ring of the starting curve is known, our attack (here derived from [8]) has polynomial-time complexity assuming the generalised Riemann hypothesis. Our attack applies to any isogeny-based cryptosystem that publishes the images of points under the secret isogeny, for example Séta [13] and B-SIDH [11]. It does not apply to CSIDH [9], CSI-FiSh [3], or SQISign [14].
Supersingular Curves You can Trust
Generating a supersingular elliptic curve such that nobody knows its endomorphism ring is a notoriously hard task, despite several isogeny-based protocols relying on such an object. A trusted setup is often proposed as a workaround, but several aspects remain unclear. In this work, we develop the tools necessary to practically run such a distributed trusted-setup ceremony. Our key contribution is the first statistically zero-knowledge proof of isogeny knowledge that is compatible with any base field. To prove statistical ZK, we introduce isogeny graphs with Borel level structure and prove they have the Ramanujan property. Then, we analyze the security of a distributed trusted-setup protocol based on our ZK proof in the simplified universal composability framework. Lastly, we develop an optimized implementation of the ZK proof, and we propose a strategy to concretely deploy the trusted-setup protocol.
Disorientation faults in CSIDH
We investigate a new class of fault-injection attacks against the CSIDH family of cryptographic group actions. Our disorientation attacks effectively flip the direction of some isogeny steps. We achieve this by faulting a specific subroutine, connected to the Legendre symbol or Elligator computations performed during the evaluation of the group action. These subroutines are present in almost all known CSIDH implementations. Post-processing a set of faulty samples allows us to infer constraints on the secret key. The details are implementation specific, but we show that in many cases, it is possible to recover the full secret key with only a modest number of successful fault injections and modest computational resources. We provide full details for attacking the original CSIDH proof-of-concept software as well as the CTIDH constant-time implementation. Finally, we present a set of lightweight countermeasures against the attack and discuss their security.
Improved torsion-point attacks on SIDH variants 📺
SIDH is a post-quantum key exchange algorithm based on the presumed difficulty of finding isogenies between supersingular elliptic curves. However, SIDH and related cryptosystems also reveal additional information: the restriction of a secret isogeny to a subgroup of the curve (torsion-point information). Petit [31] was the first to demonstrate that torsion-point information could noticeably lower the difficulty of finding secret isogenies. In particular, Petit showed that "overstretched'' parameterizations of SIDH could be broken in polynomial time. However, this did not impact the security of any cryptosystems proposed in the literature. The contribution of this paper is twofold: First, we strengthen the techniques of [31] by exploiting additional information coming from a dual and a Frobenius isogeny. This extends the impact of torsion-point attacks considerably. In particular, our techniques yield a classical attack that completely breaks the $n$-party group key exchange of [2], first introduced as GSIDH in [17], for 6 parties or more, and a quantum attack for 3 parties or more that improves on the best known asymptotic complexity. We also provide a Magma implementation of our attack for 6 parties. We give the full range of parameters for which our attacks apply. Second, we construct SIDH variants designed to be weak against our attacks; this includes backdoor choices of starting curve, as well as backdoor choices of base-field prime. We stress that our results do not degrade the security of, or reveal any weakness in, the NIST submission SIKE [20].
Rational isogenies from irrational endomorphisms 📺
In this paper, we introduce a polynomial-time algorithm to compute a connecting $\mathcal{O}$-ideal between two supersingular elliptic curves over $\mathbb{F}_p$ with common $\mathbb{F}_p$-endomorphism ring $\mathcal{O}$, given a description of their full endomorphism rings. This algorithm provides a reduction of the security of the CSIDH cryptosystem to the problem of computing endomorphism rings of supersingular elliptic curves. A similar reduction for SIDH appeared at Asiacrypt 2016, but relies on totally different techniques. Furthermore, we also show that any supersingular elliptic curve constructed using the complex-multiplication method can be located precisely in the supersingular isogeny graph by explicitly deriving a path to a known base curve. This result prohibits the use of such curves as a building block for a hash function into the supersingular isogeny graph.
Quantum Circuits for the CSIDH: Optimizing Quantum Evaluation of Isogenies 📺
Choosing safe post-quantum parameters for the new CSIDH isogeny-based key-exchange system requires concrete analysis of the cost of quantum attacks. The two main contributions to attack cost are the number of queries in hidden-shift algorithms and the cost of each query. This paper analyzes algorithms for each query, introducing several new speedups while showing that some previous claims were too optimistic for the attacker. This paper includes a full computer-verified simulation of its main algorithm down to the bit-operation level.
CSIDH: An Efficient Post-Quantum Commutative Group Action
We propose an efficient commutative group action suitable for non-interactive key exchange in a post-quantum setting. Our construction follows the layout of the Couveignes–Rostovtsev–Stolbunov cryptosystem, but we apply it to supersingular elliptic curves defined over a large prime field $$\mathbb F_p$$, rather than to ordinary elliptic curves. The Diffie–Hellman scheme resulting from the group action allows for public-key validation at very little cost, runs reasonably fast in practice, and has public keys of only 64 bytes at a conjectured AES-128 security level, matching NIST’s post-quantum security category I.