CryptoDB
Marius A. Aardal
Publications and invited talks
Year
Venue
Title
2025
CRYPTO
A Complete Security Proof of SQIsign
Abstract
SQIsign is the leading digital signature from isogenies. Despite the many improvements that have appeared in the literature, all its recents variants lack a complete security proof.
In this work, we provide the first full security proof of SQIsign, as submitted to the second round of NIST’s on-ramp track for digital signatures.
To do so, we introduce a new framework, which we call Fiat--Shamir with hints, that captures all those protocols where the simulator needs additional information to simulate a transcript. Using this framework, we show that SQIsign is EUF-CMA secure in the ROM, assuming the hardness of the One Endomorphism problem with hints, or the hardness of the Full Endomorphism Ring problem with hints together with a hint indistinguishability assumption; all assumptions, unlike previous ones in the literature, are non-interactive. Along the way, we prove several intermediate results that may be of independent interest.
2024
CRYPTO
Aggregating Falcon Signatures With LaBRADOR
Abstract
Several prior works have suggested to use non-interactive arguments of knowledge with short proofs to aggregate signatures of Falcon, which is part of the first post-quantum signatures selected for standardization by NIST. Especially LaBRADOR, based on standard structured lattice assumptions and published at CRYPTO'23, seems promising to realize this task. However, no prior work has tackled this idea in a rigorous way. In this paper, we thoroughly prove how to aggregate Falcon signatures using LaBRADOR. We start by providing the first complete knowledge soundness analysis for the non-interactive version of LaBRADOR. Here, the multi-round and recursive nature of LaBRADOR requires a complex and thorough analysis. For this purpose, we introduce the notion of predicate special soundness (PSS). This is a general framework for evaluating the knowledge error of complex Fiat-Shamir arguments of knowledge protocols in a modular fashion, which we believe to be of independent interest. We then explain the exact steps to take in order to adapt the non-interactive LaBRADOR proof system for aggregating Falcon signatures and provide concrete proof size estimates. Additionally, we formalize the folklore approach of obtaining aggregate signatures from the class of hash-then-sign signatures through arguments of knowledge.
2024
TCHES
Optimized One-Dimensional SQIsign Verification on Intel and Cortex-M4
Abstract
SQIsign is a well-known post-quantum signature scheme due to its small combined signature and public-key size. However, SQIsign suffers from notably long signing times, and verification times are not short either. To improve this, recent research has explored both one-dimensional and two-dimensional variants of SQIsign, each with distinct characteristics. In particular, SQIsign2D’s efficient signing and verification times have made it a focal point of recent research. However, the absence of an optimized one-dimensional verification implementation hampers a thorough comparison between these different variants. This work bridges this gap in the literature: we provide a state-of-the-art implementation of one-dimensional SQIsign verification, including novel optimizations. We report a record-breaking one-dimensional SQIsign verification time of 8.55 Mcycles on a Raptor Lake Intel processor, closely matching SQIsign2D on the same processor. For uncompressed signatures, the signature size doubles and we verify in only 5.6 Mcycles. Taking advantage of the inherent parallelism available in isogeny computations, we present 5-core variants that can go as low as 1.3 Mcycles. Furthermore, we present the first implementation that supports both 32-bit and 64-bit processors. It includes optimized assembly code for the Cortex-M4 and has been integrated with the pqm4 project. Our results motivate further research into one-dimensional SQIsign, as it boasts unique features among isogeny-based schemes.
Coauthors
- Marius A. Aardal (3)
- Gora Adj (1)
- Arwa Alblooshi (1)
- Diego F. Aranha (2)
- Andrea Basso (1)
- Katharina Boudgoust (1)
- Isaac A. Canales-Martínez (1)
- Jorge Chavez-Saab (1)
- Luca De Feo (1)
- Décio Luiz Gazzoni Filho (1)
- Sebastian Kolby (1)
- Sikhar Patranabis (1)
- Krijn Reijnders (1)
- Francisco Rodríguez-Henríquez (1)
- Akira Takahashi (1)
- Benjamin Wesolowski (1)