International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Paper: From Minicrypt to Obfustopia via Private-Key Functional Encryption

Authors:
Ilan Komargodski
Gil Segev
Download:
DOI: 10.1007/s00145-019-09327-x
Search ePrint
Search Google
Abstract: Private-key functional encryption enables fine-grained access to symmetrically encrypted data. Although private-key functional encryption (supporting an unbounded number of keys and ciphertexts) seems significantly weaker than its public-key variant, its known realizations all rely on public-key functional encryption. At the same time, however, up until recently it was not known to imply any public-key primitive, demonstrating our poor understanding of this primitive. Bitansky et al. (Theory of cryptography—14th international conference, TCC 2016-B, 2016 ) showed that sub-exponentially secure private-key function encryption bridges from nearly exponential security in Minicrypt to slightly super-polynomial security in Cryptomania, and from sub-exponential security in Cryptomania to Obfustopia. Specifically, given any sub-exponentially secure private-key functional encryption scheme and a nearly exponentially secure one-way function, they constructed a public-key encryption scheme with slightly super-polynomial security. Assuming, in addition, a sub-exponentially secure public-key encryption scheme, they then constructed an indistinguishability obfuscator (or a public-key functional encryption scheme if the given building blocks are polynomially secure). We show that quasi-polynomially secure private-key functional encryption bridges from sub-exponential security in Minicrypt all the way to Cryptomania. First, given any quasi-polynomially secure private-key functional encryption scheme, we construct an indistinguishability obfuscator for circuits with inputs of poly-logarithmic length. Then, we observe that such an obfuscator can be used to instantiate many natural applications of indistinguishability obfuscation. Specifically, relying on sub-exponentially secure one-way functions, we show that quasi-polynomially secure private-key functional encryption implies not just public-key encryption but leads all the way to public-key functional encryption for circuits with inputs of poly-logarithmic length. Moreover, relying on sub-exponentially secure injective one-way functions, we show that quasi-polynomially secure private-key functional encryption implies a hard-on-average distribution over instances of a PPAD-complete problem. Underlying our constructions is a new transformation from single-input functional encryption to multi-input functional encryption in the private-key setting. The previously known such transformation (Brakerski et al. J Cryptol 31(2):434–520, 2018 ) required a sub-exponentially secure single-input scheme, and obtained a scheme supporting only a slightly super-constant number of inputs. Our transformation both relaxes the underlying assumption and supports more inputs: Given any quasi-polynomially secure single-input scheme, we obtain a scheme supporting a poly-logarithmic number of inputs.
BibTeX
@article{jofc-2019-30140,
  title={From Minicrypt to Obfustopia via Private-Key Functional Encryption},
  journal={Journal of Cryptology},
  publisher={Springer},
  doi={10.1007/s00145-019-09327-x},
  author={Ilan Komargodski and Gil Segev},
  year=2019
}