## CryptoDB

### Gilad Asharov

#### Affiliation: Cornell Tech

#### Publications

**Year**

**Venue**

**Title**

2021

EUROCRYPT

Towards Accountability in CRS Generation
Abstract

It is well known that several cryptographic primitives cannot be achieved without a common reference string (CRS). Those include, for instance, non-interactive zero-knowledge for NP, or malicious secure computation in fewer than four rounds. The security of those primitives heavily rely upon on the assumption that the trusted authority, who generates the CRS, does not misuse the randomness used in the CRS generation. However, we argue that there is no such thing as an unconditionally trusted authority and every authority must be held accountable for any trust to be well-founded. Indeed, a malicious authority can, for instance, recover private inputs of honest parties given transcripts of the protocols executed with respect to the CRS it has generated.
While eliminating trust in the trusted authority may not be entirely feasible, can we at least move towards achieving some notion of accountability? We propose a new notion in which, if the CRS authority releases the private inputs of protocol executions to others, we can then provide a publicly-verifiable proof that certifies that the authority misbehaved. We study the feasibility of this notion in the context of non-interactive zero knowledge and two-round secure two-party computation.

2020

EUROCRYPT

OptORAMa: Optimal Oblivious RAM
📺
Abstract

Oblivious RAM (ORAM), first introduced in the ground-breaking work of Goldreich and Ostrovsky (STOC '87 and J. ACM '96) is a technique for provably obfuscating programs' access patterns, such that the access patterns leak no information about the programs' secret inputs. To compile a general program to an oblivious counterpart, it is well-known that $\Omega(\log N)$ amortized blowup is necessary, where $N$ is the size of the logical memory. This was shown in Goldreich and Ostrovksy's original ORAM work for statistical security and in a somewhat restricted model (the so called \emph{balls-and-bins} model), and recently by Larsen and Nielsen (CRYPTO '18) for computational security.
A long standing open question is whether there exists an optimal ORAM construction that matches the aforementioned logarithmic lower bounds (without making large memory word assumptions, and assuming a constant number of CPU registers). In this paper, we resolve this problem and present the first secure ORAM with $O(\log N)$ amortized blowup, assuming one-way functions. Our result is inspired by and non-trivially improves on the recent beautiful work of Patel et al. (FOCS '18) who gave a construction with $O(\log N\cdot \log\log N)$ amortized blowup, assuming one-way functions.
One of our building blocks of independent interest is a linear-time deterministic oblivious algorithm for tight compaction: Given an array of $n$ elements where some elements are marked, we permute the elements in the array so that all marked elements end up in the front of the array. Our $O(n)$ algorithm improves the previously best known deterministic or randomized algorithms whose running time is $O(n \cdot\log n)$ or $O(n \cdot\log \log n)$, respectively.

2019

EUROCRYPT

Locality-Preserving Oblivious RAM
📺
Abstract

Oblivious RAMs, introduced by Goldreich and Ostrovsky [JACM’96], compile any RAM program into one that is “memory oblivious”, i.e., the access pattern to the memory is independent of the input. All previous ORAM schemes, however, completely break the locality of data accesses (for instance, by shuffling the data to pseudorandom positions in memory).In this work, we initiate the study of locality-preserving ORAMs—ORAMs that preserve locality of the accessed memory regions, while leaking only the lengths of contiguous memory regions accessed. Our main results demonstrate the existence of a locality-preserving ORAM with poly-logarithmic overhead both in terms of bandwidth and locality. We also study the tradeoff between locality, bandwidth and leakage, and show that any scheme that preserves locality and does not leak the lengths of the contiguous memory regions accessed, suffers from prohibitive bandwidth.To the best of our knowledge, before our work, the only works combining locality and obliviousness were for symmetric searchable encryption [e.g., Cash and Tessaro (EUROCRYPT’14), Asharov et al. (STOC’16)]. Symmetric search encryption ensures obliviousness if each keyword is searched only once, whereas ORAM provides obliviousness to any input program. Thus, our work generalizes that line of work to the much more challenging task of preserving locality in ORAMs.

2018

CRYPTO

On the Complexity of Compressing Obfuscation
📺
Abstract

Indistinguishability obfuscation has become one of the most exciting cryptographic primitives due to its far reaching applications in cryptography and other fields. However, to date, obtaining a plausibly secure construction has been an illusive task, thus motivating the study of seemingly weaker primitives that imply it, with the possibility that they will be easier to construct.In this work, we provide a systematic study of compressing obfuscation, one of the most natural and simple to describe primitives that is known to imply indistinguishability obfuscation when combined with other standard assumptions. A compressing obfuscator is roughly an indistinguishability obfuscator that outputs just a slightly compressed encoding of the truth table. This generalizes notions introduced by Lin et al. (PKC 2016) and Bitansky et al. (TCC 2016) by allowing for a broader regime of parameters.We view compressing obfuscation as an independent cryptographic primitive and show various positive and negative results concerning its power and plausibility of existence, demonstrating significant differences from full-fledged indistinguishability obfuscation.First, we show that as a cryptographic building block, compressing obfuscation is weak. In particular, when combined with one-way functions, it cannot be used (in a black-box way) to achieve public-key encryption, even under (sub-)exponential security assumptions. This is in sharp contrast to indistinguishability obfuscation, which together with one-way functions implies almost all cryptographic primitives.Second, we show that to construct compressing obfuscation with perfect correctness, one only needs to assume its existence with a very weak correctness guarantee and polynomial hardness. Namely, we show a correctness amplification transformation with optimal parameters that relies only on polynomial hardness assumptions. This implies a universal construction assuming only polynomially secure compressing obfuscation with approximate correctness. In the context of indistinguishability obfuscation, we know how to achieve such a result only under sub-exponential security assumptions together with derandomization assumptions.Lastly, we characterize the existence of compressing obfuscation with statistical security. We show that in some range of parameters and for some classes of circuits such an obfuscator exists, whereas it is unlikely to exist with better parameters or for larger classes of circuits. These positive and negative results reveal a deep connection between compressing obfuscation and various concepts in complexity theory and learning theory.

2018

CRYPTO

Tight Tradeoffs in Searchable Symmetric Encryption
📺
Abstract

A searchable symmetric encryption (SSE) scheme enables a client to store data on an untrusted server while supporting keyword searches in a secure manner. Recent experiments have indicated that the practical relevance of such schemes heavily relies on the tradeoff between their space overhead, locality (the number of non-contiguous memory locations that the server accesses with each query), and read efficiency (the ratio between the number of bits the server reads with each query and the actual size of the answer). These experiments motivated Cash and Tessaro (EUROCRYPT ’14) and Asharov et al. (STOC ’16) to construct SSE schemes offering various such tradeoffs, and to prove lower bounds for natural SSE frameworks. Unfortunately, the best-possible tradeoff has not been identified, and there are substantial gaps between the existing schemes and lower bounds, indicating that a better understanding of SSE is needed.We establish tight bounds on the tradeoff between the space overhead, locality and read efficiency of SSE schemes within two general frameworks that capture the memory access pattern underlying all existing schemes. First, we introduce the “pad-and-split” framework, refining that of Cash and Tessaro while still capturing the same existing schemes. Within our framework we significantly strengthen their lower bound, proving that any scheme with locality L must use space $$\varOmega ( N \log N / \log L )$$Ω(NlogN/logL) for databases of size N. This is a tight lower bound, matching the tradeoff provided by the scheme of Demertzis and Papamanthou (SIGMOD ’17) which is captured by our pad-and-split framework.Then, within the “statistical-independence” framework of Asharov et al. we show that their lower bound is essentially tight: We construct a scheme whose tradeoff matches their lower bound within an additive $$O(\log \log \log N)$$O(logloglogN) factor in its read efficiency, once again improving upon the existing schemes. Our scheme offers optimal space and locality, and nearly-optimal read efficiency that depends on the frequency of the queried keywords: For a keyword that is associated with $$n = N^{1 - \epsilon (n)}$$n=N1-ϵ(n) document identifiers, the read efficiency is $$\omega (1) \cdot {\epsilon }(n)^{-1}+ O(\log \log \log N)$$ω(1)·ϵ(n)-1+O(logloglogN) when retrieving its identifiers (where the $$\omega (1)$$ω(1) term may be arbitrarily small, and $$\omega (1) \cdot {\epsilon }(n)^{-1}$$ω(1)·ϵ(n)-1 is the lower bound proved by Asharov et al.). In particular, for any keyword that is associated with at most $$N^{1 - 1/o(\log \log \log N)}$$N1-1/o(logloglogN) document identifiers (i.e., for any keyword that is not exceptionally common), we provide read efficiency $$O(\log \log \log N)$$O(logloglogN) when retrieving its identifiers.

2013

TCC

2012

EUROCRYPT

#### Program Committees

- PKC 2020
- TCC 2019
- TCC 2018
- Eurocrypt 2017

#### Coauthors

- Prabhanjan Ananth (1)
- Amos Beimel (1)
- Ran Canetti (2)
- T.-H. Hubert Chan (1)
- Hila Dahari (1)
- Naomi Ephraim (1)
- Vipul Goyal (1)
- Carmit Hazay (2)
- Abhishek Jain (1)
- Ilan Komargodski (2)
- Wei-Kai Lin (1)
- Yehuda Lindell (9)
- Adriana López-Alt (1)
- Nikolaos Makriyannis (1)
- Kartik Nayak (2)
- Eran Omri (1)
- Claudio Orlandi (1)
- Rafael Pass (2)
- Enoch Peserico (1)
- Tal Rabin (2)
- Ling Ren (1)
- Thomas Schneider (3)
- Gil Segev (5)
- Ido Shahaf (1)
- Elaine Shi (2)
- Eran Tromer (1)
- Vinod Vaikuntanathan (1)
- Daniel Wichs (1)
- Hila Zarosim (1)
- Michael Zohner (3)