## CryptoDB

### Naomi Ephraim

#### Publications

**Year**

**Venue**

**Title**

2020

EUROCRYPT

Continuous Verifiable Delay Functions
📺
Abstract

We introduce the notion of a continuous verifiable delay function (cVDF): a function g which is (a) iteratively sequential---meaning that evaluating the iteration $g^{(t)}$ of g (on a random input) takes time roughly t times the time to evaluate g, even with many parallel processors, and (b) (iteratively) verifiable---the output of $g^{(t)}$ can be efficiently verified (in time that is essentially independent of t). In other words, the iterated function $g^{(t)}$ is a verifiable delay function (VDF) (Boneh et al., CRYPTO '18), having the property that intermediate steps of the computation (i.e., $g^{(t')}$ for t'<t) are publicly and continuously verifiable.
We demonstrate that cVDFs have intriguing applications: (a) they can be used to construct public randomness beacons that only require an initial random seed (and no further unpredictable sources of randomness), (b) enable outsourceable VDFs where any part of the VDF computation can be verifiably outsourced, and (c) have deep complexity-theoretic consequences: in particular, they imply the existence of depth-robust moderately-hard Nash equilibrium problem instances, i.e. instances that can be solved in polynomial time yet require a high sequential running time.
Our main result is the construction of a cVDF based on the repeated squaring assumption and the soundness of the Fiat-Shamir (FS) heuristic for constant-round proofs.
We highlight that when viewed as a (plain) VDF, our construction requires a weaker FS assumption than previous ones (earlier constructions require the FS heuristic for either super-logarithmic round proofs, or for arguments).

2020

EUROCRYPT

SPARKs: Succinct Parallelizable Arguments of Knowledge
📺
Abstract

We introduce the notion of a Succinct Parallelizable Argument of Knowledge (SPARK). This is an argument system with the following three properties for computing and proving a time T (non-deterministic) computation:
- The prover's (parallel) running time is T + polylog T. (In other words, the prover's running time is essentially T for large computation times!)
- The prover uses at most polylog T processors.
- The communication complexity and verifier complexity are both polylog T.
While the third property is standard in succinct arguments, the combination of all three is desirable as it gives a way to leverage moderate parallelism in favor of near-optimal running time. We emphasize that even a factor two overhead in the prover's parallel running time is not allowed.
Our main results are the following, all for non-deterministic polynomial-time RAM computation. We construct (1) an (interactive) SPARK based solely on the existence of collision-resistant hash functions, and (2) a non-interactive SPARK based on any collision-resistant hash function and any SNARK with quasi-linear overhead (as satisfied by recent SNARK constructions).

2018

CRYPTO

On the Complexity of Compressing Obfuscation
📺
Abstract

Indistinguishability obfuscation has become one of the most exciting cryptographic primitives due to its far reaching applications in cryptography and other fields. However, to date, obtaining a plausibly secure construction has been an illusive task, thus motivating the study of seemingly weaker primitives that imply it, with the possibility that they will be easier to construct.In this work, we provide a systematic study of compressing obfuscation, one of the most natural and simple to describe primitives that is known to imply indistinguishability obfuscation when combined with other standard assumptions. A compressing obfuscator is roughly an indistinguishability obfuscator that outputs just a slightly compressed encoding of the truth table. This generalizes notions introduced by Lin et al. (PKC 2016) and Bitansky et al. (TCC 2016) by allowing for a broader regime of parameters.We view compressing obfuscation as an independent cryptographic primitive and show various positive and negative results concerning its power and plausibility of existence, demonstrating significant differences from full-fledged indistinguishability obfuscation.First, we show that as a cryptographic building block, compressing obfuscation is weak. In particular, when combined with one-way functions, it cannot be used (in a black-box way) to achieve public-key encryption, even under (sub-)exponential security assumptions. This is in sharp contrast to indistinguishability obfuscation, which together with one-way functions implies almost all cryptographic primitives.Second, we show that to construct compressing obfuscation with perfect correctness, one only needs to assume its existence with a very weak correctness guarantee and polynomial hardness. Namely, we show a correctness amplification transformation with optimal parameters that relies only on polynomial hardness assumptions. This implies a universal construction assuming only polynomially secure compressing obfuscation with approximate correctness. In the context of indistinguishability obfuscation, we know how to achieve such a result only under sub-exponential security assumptions together with derandomization assumptions.Lastly, we characterize the existence of compressing obfuscation with statistical security. We show that in some range of parameters and for some classes of circuits such an obfuscator exists, whereas it is unlikely to exist with better parameters or for larger classes of circuits. These positive and negative results reveal a deep connection between compressing obfuscation and various concepts in complexity theory and learning theory.

#### Coauthors

- Gilad Asharov (1)
- Cody Freitag (2)
- Ilan Komargodski (3)
- Rafael Pass (3)