International Association for Cryptologic Research

International Association
for Cryptologic Research


Yashvanth Kondi


Guaranteed Output in O(sqrt(n)) Rounds for Round-Robin Sampling Protocols 📺
We introduce a notion of round-robin secure sampling that captures several protocols in the literature, such as the "powers-of-tau" setup protocol for pairing-based polynomial commitments and zk-SNARKs, and certain verifiable mixnets. Due to their round-robin structure, protocols of this class inherently require n sequential broadcast rounds, where n is the number of participants. We describe how to compile them generically into protocols that require only O(sqrt(n)) broadcast rounds. Our compiled protocols guarantee output delivery against any dishonest majority. This stands in contrast to prior techniques, which require Omega(n) sequential broadcasts in most cases (and sometimes many more). Our compiled protocols permit a certain amount of adversarial bias in the output, as all sampling protocols with guaranteed output must, due to Cleve's impossibility result (STOC'86). We show that in the context of the aforementioned applications, this bias is harmless.
Improved Straight-Line Extraction in the Random Oracle Model With Applications to Signature Aggregation
Yashvanth Kondi abhi shelat
The goal of this paper is to improve the efficiency and applicability of straightline extraction techniques in the random oracle model. Straightline extraction in the random oracle model refers to the existence of an extractor, which given the random oracle queries made by a prover P*(x) on some theorem x, is able to produce a witness w for x with roughly the same probability that P* produces a verifying proof. This notion applies to both zero-knowledge protocols and verifiable computation where the goal is compressing a proof. Pass (CRYPTO '03) first showed how to achieve this property for NP using a cut-and-choose technique which incurred a \lambda^2-bit overhead in communication where \lambda is a security parameter. Fischlin (CRYPTO '05) presented a more efficient technique based on ``proofs of work'' that sheds this \lambda^2 cost, but only applies to a limited class of Sigma Protocols with a ``quasi-unique response'' property, which for example, does not necessarily include the standard OR composition for Sigma protocols. With Schnorr/EdDSA signature aggregation as a motivating application, we develop new techniques to improve the computation cost of straight-line extractable proofs. Our improvements to the state of the art range from 70x--200x for the best compression parameters. This is due to a uniquely suited polynomial evaluation algorithm, and the insight that a proof-of-work that relies on multicollisions and the birthday paradox is faster to solve than inverting a fixed target. Our collision based proof-of-work more generally improves the Prover's random oracle query complexity when applied in the NIZK setting as well. In addition to reducing the query complexity of Fischlin's Prover, for a special class of Sigma protocols we can for the first time closely match a new lower bound we present. Finally we extend Fischlin's technique so that it applies to a more general class of strongly-sound Sigma protocols, which includes the OR composition. We achieve this by carefully randomizing Fischlin's technique---we show that its current deterministic nature prevents its application to certain multi-witness languages.
Threshold Schnorr with Stateless Deterministic Signing from Standard Assumptions 📺
Schnorr's signature scheme permits an elegant threshold signing protocol due to its linear signing equation. However each new signature consumes fresh randomness, which can be a major attack vector in practice. Sources of randomness in deployments are frequently either unreliable, or require state continuity, i.e. reliable fresh state resilient to rollbacks. State continuity is a notoriously difficult guarantee to achieve in practice, due to system crashes caused by software errors, malicious actors, or power supply interruptions (Parno et al., S&P '11). This is a non-issue for Schnorr variants such as EdDSA, which is specified to derive nonces deterministically as a function of the message and the secret key. However, it is challenging to translate these benefits to the threshold setting, specifically to construct a threshold Schnorr scheme where signing neither requires parties to consume fresh randomness nor update long-term secret state. In this work, we construct a dishonest majority threshold Schnorr protocol that enables such stateless deterministic nonce derivation using standardized block ciphers. Our core technical ingredients are new tools for the zero-knowledge from garbled circuits (ZKGC) paradigm to aid in verifying correct nonce derivation: - A mechanism based on UC Commitments that allows a prover to commit once to a witness, and prove an unbounded number of statements online with only cheap symmetric key operations. - A garbling gadget to translate intermediate garbled circuit wire labels to arithmetic encodings. A proof per our scheme requires only a small constant number of exponentiations.
Multiparty Generation of an RSA Modulus 📺
We present a new multiparty protocol for the distributed generation of biprime RSA moduli, with security against any subset of maliciously colluding parties assuming oblivious transfer and the hardness of factoring. Our protocol is highly modular, and its uppermost layer can be viewed as a template that generalizes the structure of prior works and leads to a simpler security proof. We introduce a combined sampling-and-sieving technique that eliminates both the inherent leakage in the approach of Frederiksen et al. (Crypto'18), and the dependence upon additively homomorphic encryption in the approach of Hazay et al. (JCrypt'19). We combine this technique with an efficient, privacy-free check to detect malicious behavior retroactively when a sampled candidate is not a biprime, and thereby overcome covert rejection-sampling attacks and achieve both asymptotic and concrete efficiency improvements over the previous state of the art.
Efficient Adaptively Secure Zero-Knowledge from Garbled Circuits
Zero-knowledge (ZK) protocols are undoubtedly among the central primitives in cryptography, lending their power to numerous applications such as secure computation, voting, auctions, and anonymous credentials to name a few. The study of efficient ZK protocols for non-algebraic statements has seen rapid progress in recent times, relying on secure computation techniques. The primary contribution of this work lies in constructing efficient UC-secure constant round ZK protocols from garbled circuits that are secure against adaptive corruptions, with communication linear in the size of the statement. We begin by showing that the practically efficient ZK protocol of Jawurek et al. (CCS 2013) is adaptively secure when the underlying oblivious transfer (OT) satisfies a mild adaptive security guarantee. We gain adaptive security with little to no overhead over the static case. A conditional verification technique is then used to obtain a three-round adaptively secure zero-knowledge argument in the non-programmable random oracle model (NPROM). Our three-round protocol yields a proof size that is shorter than the known UC-secure practically-efficient schemes in the short-CRS model with the right choice of security parameters.We draw motivation from state-of-the-art non-interactive secure computation protocols and leveraging specifics of ZK functionality show a two-round protocol that achieves static security. It is a proof, while most known efficient ZK protocols and our three round protocol are only arguments.