International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Lisa Kohl

Publications

Year
Venue
Title
2019
PKC
Hunting and Gathering – Verifiable Random Functions from Standard Assumptions with Short Proofs
Lisa Kohl
A verifiable random function (VRF) is a pseudorandom function, where outputs can be publicly verified. That is, given an output value together with a proof, one can check that the function was indeed correctly evaluated on the corresponding input. At the same time, the output of the function is computationally indistinguishable from random for all non-queried inputs.We present the first construction of a VRF which meets the following properties at once: It supports an exponential-sized input space, it achieves full adaptive security based on a non-interactive constant-size assumption and its proofs consist of only a logarithmic number of group elements for inputs of arbitrary polynomial length.Our construction can be instantiated in symmetric bilinear groups with security based on the decision linear assumption. We build on the work of Hofheinz and Jager (TCC 2016), who were the first to construct a verifiable random function with security based on a non-interactive constant-size assumption. Basically, their VRF is a matrix product in the exponent, where each matrix is chosen according to one bit of the input. In order to allow verification given a symmetric bilinear map, a proof consists of all intermediary results. This entails a proof size of $$\varOmega (L)$$ group elements, where L is the bit-length of the input.Our key technique, which we call hunting and gathering, allows us to break this barrier by rearranging the function, which – combined with the partitioning techniques of Bitansky (TCC 2017) – results in a proof size of $$\ell $$ group elements for arbitrary $$\ell \in \omega (1)$$.
2019
EUROCRYPT
Homomorphic Secret Sharing from Lattices Without FHE 📺
Homomorphic secret sharing (HSS) is an analog of somewhat- or fully homomorphic encryption (S/FHE) to the setting of secret sharing, with applications including succinct secure computation, private manipulation of remote databases, and more. While HSS can be viewed as a relaxation of S/FHE, the only constructions from lattice-based assumptions to date build atop specific forms of threshold or multi-key S/FHE. In this work, we present new techniques directly yielding efficient 2-party HSS for polynomial-size branching programs from a range of lattice-based encryption schemes, without S/FHE. More concretely, we avoid the costly key-switching and modulus-reduction steps used in S/FHE ciphertext multiplication, replacing them with a new distributed decryption procedure for performing “restricted” multiplications of an input with a partial computation value. Doing so requires new methods for handling the blowup of “noise” in ciphertexts in a distributed setting, and leverages several properties of lattice-based encryption schemes together with new tricks in share conversion.The resulting schemes support a superpolynomial-size plaintext space and negligible correctness error, with share sizes comparable to SHE ciphertexts, but cost of homomorphic multiplication roughly one order of magnitude faster. Over certain rings, our HSS can further support some level of packed SIMD homomorphic operations. We demonstrate the practical efficiency of our schemes within two application settings, where we compare favorably with current best approaches: 2-server private database pattern-match queries, and secure 2-party computation of low-degree polynomials.
2018
EUROCRYPT
2018
CRYPTO
On Tightly Secure Non-Interactive Key Exchange 📺
We consider the reduction loss of security reductions for non-interactive key exchange (NIKE) schemes. Currently, no tightly secure NIKE schemes exist, and in fact Bader et al. (EUROCRYPT 2016) provide a lower bound (of $$\varOmega (n^2)$$, where $$n$$ is the number of parties an adversary interacts with) on the reduction loss for a large class of NIKE schemes.We offer two results: the first NIKE scheme with a reduction loss of $$n/2$$ that circumvents the lower bound of Bader et al., but is of course still far from tightly secure. Second, we provide a generalization of Bader et al.’s lower bound to a larger class of NIKE schemes (that also covers our NIKE scheme), with an adapted lower bound of $$n/2$$ on the reduction loss. Hence, in that sense, the reduction for our NIKE scheme is optimal.
2017
CRYPTO