International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Rebekah Mercer

Publications

Year
Venue
Title
2020
TCC
Stronger Security and Constructions of Multi-Designated Verifier Signatures 📺
Off-the-Record (OTR) messaging is a two-party message authentication protocol that also provides plausible deniability: there is no record that can later convince a third party what messages were actually sent. The challenge in group OTR, is to enable the sender to sign his messages so that group members can verify who sent a message (signatures should be unforgeable, even by group members). Also, we want the off-the-record property: even if some verifiers are corrupt and collude, they should not be able to prove the authenticity of a message to any outsider. Finally, we need consistency, meaning that if any group member accepts a signature, then all of them do. To achieve these properties it is natural to consider Multi-Designated Verifier Signatures (MDVS). However, existing literature defines and builds only limited notions of MDVS, where (a) the off-the-record property (source hiding) only holds when all verifiers could conceivably collude, and (b) the consistency property is not considered. The contributions of this paper are two-fold: stronger definitions for MDVS, and new constructions meeting those definitions. We strengthen source-hiding to support any subset of corrupt verifiers, and give the first formal definition of consistency. We build three new MDVS: one from generic standard primitives (PRF, key agreement, NIZK), one with concrete efficiency and one from functional encryption.
2019
ASIACRYPT
Quisquis: A New Design for Anonymous Cryptocurrencies
Despite their usage of pseudonyms rather than persistent identifiers, most existing cryptocurrencies do not provide users with any meaningful levels of privacy. This has prompted the creation of privacy-enhanced cryptocurrencies such as Monero and Zcash, which are specifically designed to counteract the tracking analysis possible in currencies like Bitcoin. These cryptocurrencies, however, also suffer from some drawbacks: in both Monero and Zcash, the set of potential unspent coins is always growing, which means users cannot store a concise representation of the blockchain. Additionally, Zcash requires a common reference string and the fact that addresses are reused multiple times in Monero has led to attacks to its anonymity.In this paper we propose a new design for anonymous cryptocurrencies, Quisquis, that achieves provably secure notions of anonymity. Quisquis stores a relatively small amount of data, does not require trusted setup, and in Quisquis each address appears on the blockchain at most twice: once when it is generated as output of a transaction, and once when it is spent as input to a transaction. Our result is achieved by combining a DDH-based tool (that we call updatable keys) with efficient zero-knowledge arguments.