International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Charles Momin

Publications

Year
Venue
Title
2021
TCHES
Improved Leakage-Resistant Authenticated Encryption based on Hardware AES Coprocessors 📺
We revisit Unterstein et al.’s leakage-resilient authenticated encryption scheme from CHES 2020. Its main goal is to enable secure software updates by leveraging unprotected (e.g., AES, SHA256) coprocessors available on low-end microcontrollers. We show that the design of this scheme ignores an important attack vector that can significantly reduce its security claims, and that the evaluation of its leakage-resilient PRF is quite sensitive to minor variations of its measurements, which can easily lead to security overstatements. We then describe and analyze a new mode of operation for which we propose more conservative security parameters and show that it competes with the CHES 2020 one in terms of performances. As an additional bonus, our solution relies only on AES-128 coprocessors, an
2020
TOSC
Spook: Sponge-Based Leakage-Resistant Authenticated Encryption with a Masked Tweakable Block Cipher 📺
This paper defines Spook: a sponge-based authenticated encryption with associated data algorithm. It is primarily designed to provide security against side-channel attacks at a low energy cost. For this purpose, Spook is mixing a leakageresistant mode of operation with bitslice ciphers enabling efficient and low latency implementations. The leakage-resistant mode of operation leverages a re-keying function to prevent differential side-channel analysis, a duplex sponge construction to efficiently process the data, and a tag verification based on a Tweakable Block Cipher (TBC) providing strong data integrity guarantees in the presence of leakages. The underlying bitslice ciphers are optimized for the masking countermeasures against side-channel attacks. Spook is an efficient single-pass algorithm. It ensures state-of-the-art black box security with several prominent features: (i) nonce misuse-resilience, (ii) beyond-birthday security with respect to the TBC block size, and (iii) multiuser security at minimum cost with a public tweak. Besides the specifications and design rationale, we provide first software and hardware implementation results of (unprotected) Spook which confirm the limited overheads that the use of two primitives sharing internal components imply. We also show that the integrity of Spook with leakage, so far analyzed with unbounded leakages for the duplex sponge and a strongly protected TBC modeled as leak-free, can be proven with a much weaker unpredictability assumption for the TBC. We finally discuss external cryptanalysis results and tweaks to improve both the security margins and efficiency of Spook.
2020
CRYPTO
Mode-Level vs. Implementation-Level Physical Security in Symmetric Cryptography: A Practical Guide Through the Leakage-Resistance Jungle 📺
Triggered by the increasing deployment of embedded cryptographic devices (e.g., for the IoT), the design of authentication, encryption and authenticated encryption schemes enabling improved security against side-channel attacks has become an important research direction. Over the last decade, a number of modes of operation have been proposed and analyzed under different abstractions. In this paper, we investigate the practical consequences of these findings. For this purpose, we first translate the physical assumptions of leakage-resistance proofs into minimum security requirements for implementers. Thanks to this (heuristic) translation, we observe that (i) security against physical attacks can be viewed as a tradeoff between mode-level and implementation-level protection mechanisms, and (i}) security requirements to guarantee confidentiality and integrity in front of leakage can be concretely different for the different parts of an implementation. We illustrate the first point by analyzing several modes of operation with gradually increased leakage-resistance. We illustrate the second point by exhibiting leveled implementations, where different parts of the investigated schemes have different security requirements against leakage, leading to performance improvements when high physical security is needed. We finally initiate a comparative discussion of the different solutions to instantiate the components of a leakage-resistant authenticated encryption scheme.
2020
TCHES
Exploring Crypto-Physical Dark Matter and Learning with Physical Rounding: Towards Secure and Efficient Fresh Re-Keying 📺
State-of-the-art re-keying schemes can be viewed as a tradeoff between efficient but heuristic solutions based on binary field multiplications, that are only secure if implemented with a sufficient amount of noise, and formal but more expensive solutions based on weak pseudorandom functions, that remain secure if the adversary accesses their output in full. Recent results on “crypto dark matter” (TCC 2018) suggest that low-complexity pseudorandom functions can be obtained by mixing linear functions over different small moduli. In this paper, we conjecture that by mixing some matrix multiplications in a prime field with a physical mapping similar to the leakage functions exploited in side-channel analysis, we can build efficient re-keying schemes based on “crypto-physical dark matter”, that remain secure against an adversary who can access noise-free measurements. We provide first analyzes of the security and implementation properties that such schemes provide. Precisely, we first show that they are more secure than the initial (heuristic) proposal by Medwed et al. (AFRICACRYPT 2010). For example, they can resist attacks put forward by Belaid et al. (ASIACRYPT 2014), satisfy some relevant cryptographic properties and can be connected to a “Learning with Physical Rounding” problem that shares some similarities with standard learning problems. We next show that they are significantly more efficient than the weak pseudorandom function proposed by Dziembowski et al. (CRYPTO 2016), by exhibiting hardware implementation results.