International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Vincent Grosso

Publications

Year
Venue
Title
2020
EUROCRYPT
Friet: an Authenticated Encryption Scheme with Built-in Fault Detection 📺
In this work we present a duplex-based authenticated encryption scheme Friet based on a new permutation called Friet-P. We designed Friet-P with a novel approach for cryptographic permutations and block ciphers that takes fault-attack resistance into account and that we introduce in this paper. In this method, we build a permutation f_C to be embedded in a larger one f. First, we define f as a sequence of steps that all abide a chosen error-correcting code C, i.e., that map C-codewords to C-codewords. Then, we embed f_C in f by first encoding its input to an element of C, applying f and then decoding back from C. This last step detects a fault when the output of f is not in C. We motivate the design of the permutation we use in Friet and report on performance in soft- and hardware. We evaluate the fault-detection capabilities of the software and simulated hardware implementations with attacks. Finally, we perform a leakage evaluation. Our code is available at https://github.com/thisimon/Friet.git.
2020
CRYPTO
Mode-Level vs. Implementation-Level Physical Security in Symmetric Cryptography: A Practical Guide Through the Leakage-Resistance Jungle 📺
Triggered by the increasing deployment of embedded cryptographic devices (e.g., for the IoT), the design of authentication, encryption and authenticated encryption schemes enabling improved security against side-channel attacks has become an important research direction. Over the last decade, a number of modes of operation have been proposed and analyzed under different abstractions. In this paper, we investigate the practical consequences of these findings. For this purpose, we first translate the physical assumptions of leakage-resistance proofs into minimum security requirements for implementers. Thanks to this (heuristic) translation, we observe that (i) security against physical attacks can be viewed as a tradeoff between mode-level and implementation-level protection mechanisms, and (i}) security requirements to guarantee confidentiality and integrity in front of leakage can be concretely different for the different parts of an implementation. We illustrate the first point by analyzing several modes of operation with gradually increased leakage-resistance. We illustrate the second point by exhibiting leveled implementations, where different parts of the investigated schemes have different security requirements against leakage, leading to performance improvements when high physical security is needed. We finally initiate a comparative discussion of the different solutions to instantiate the components of a leakage-resistant authenticated encryption scheme.
2020
TCHES
Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint 📺
One important open question in side-channel analysis is to find out whether all the leakage samples in an implementation can be exploited by an adversary, as suggested by masking security proofs. For attacks exploiting a divide-and-conquer strategy, the answer is negative: only the leakages corresponding to the first/last rounds of a block cipher can be exploited. Soft Analytical Side-Channel Attacks (SASCA) have been introduced as a powerful solution to mitigate this limitation. They represent the target implementation and its leakages as a code (similar to a Low Density Parity Check code) that is decoded thanks to belief propagation. Previous works have shown the low data complexities that SASCA can reach in practice. In this paper, we revisit these attacks by modeling them with a variation of the Random Probing Model used in masking security proofs, that we denote as the Local Random Probing Model (LRPM). Our study establishes interesting connections between this model and the erasure channel used in coding theory, leading to the following benefits. First, the LRPM allows bounding the security of concrete implementations against SASCA in a fast and intuitive manner. We use it in order to confirm that the leakage of any operation in a block cipher can be exploited, although the leakages of external operations dominate in known-plaintext/ciphertext attack scenarios. Second, we show that the LRPM is a tool of choice for the (nearly worst-case) analysis of masked implementations in the noisy leakage model, taking advantage of all the operations performed, and leading to new tradeoffs between their amount of randomness and physical noise level. Third, we show that it can considerably speed up the evaluation of other countermeasures such as shuffling.
2018
EUROCRYPT
2018
TCHES
Composable Masking Schemes in the Presence of Physical Defaults & the Robust Probing Model
Composability and robustness against physical defaults (e.g., glitches) are two highly desirable properties for secure implementations of masking schemes. While tools exist to guarantee them separately, no current formalism enables their joint investigation. In this paper, we solve this issue by introducing a new model, the robust probing model, that is naturally suited to capture the combination of these properties. We first motivate this formalism by analyzing the excellent robustness and low randomness requirements of first-order threshold implementations, and highlighting the difficulty to extend them to higher orders. Next, and most importantly, we use our theory to design and prove the first higher-order secure, robust and composable multiplication gadgets. While admittedly inspired by existing approaches to masking (e.g., Ishai-Sahai-Wagner-like, threshold, domain-oriented), these gadgets exhibit subtle implementation differences with these state-of-the-art solutions (none of which being provably composable and robust). Hence, our results illustrate how sound theoretical models can guide practically-relevant implementations.
2016
CHES
2016
CHES
2015
EPRINT
2015
EPRINT
2015
FSE
2015
ASIACRYPT
2014
EPRINT
2014
EPRINT
2014
EPRINT
2014
FSE
2013
CHES
2013
CHES

Program Committees

CHES 2019