International Association for Cryptologic Research

International Association
for Cryptologic Research


An Wang


Exploring Decryption Failures of BIKE: New Class of Weak Keys and Key Recovery Attacks
Code-based cryptography has received a lot of attention recently because it is considered secure under quantum computing. Among them, the QC-MDPC based scheme is one of the most promising due to its excellent performance. QC-MDPC based schemes are usually subject to a small rate of decryption failure, which can leak information about the secret key. This raises two crucial problems: how to accurately estimate the decryption failure rate and how to use the failure information to recover the secret key. However, the two problems are challenging due to the difficulty of geometrically characterizing the bit-flipping decoder employed in QC-MDPC, such as using decoding radius. In this work, we introduce the gathering property and show it is strongly connected with the decryption failure rate of QC-MDPC. Based on this property, we present two results for QC-MDPC based schemes. The first is a new construction of weak keys obtained by extending the keys that have gathering property via ring isomorphism. For the set of weak keys, we present a rigorous analysis of the probability, as well as experimental simulation of the decryption failure rates. Considering BIKE's parameter set targeting $128$-bit security, our result eventually indicates that the average decryption failure rate is lower bounded by $\pr{DFR}_{\text{avg}} \ge 2^{-116.61}$. The second entails two key recovery attacks against CCA secure QC-MDPC schemes using decryption failures in a multi-target setting. The two attacks consider whether or not it is allowed to reuse ciphertexts respectively. In both cases, we show the decryption failures can be used to identify whether a target's secret key satisfies the gathering property. Then using the gathering property as an extra information, we present a modified information set decoding algorithm that efficiently retrieves the target's secret key. For BIKE's parameter set targeting $128$-bit security, we show a key recovery attack with complexity $2^{116.61}$ can be mounted if ciphertexts reusing is not permitted, and the complexity can be reduced to $2^{98.77}$ when ciphertexts reusing is permitted.
Exploiting the Symmetry of $\mathbb{Z}^n$: Randomization and the Automorphism Problem
$\mathbb{Z}^n$ is one of the simplest types of lattices, but the computational problems on its rotations, such as $\mathbb{Z}$SVP and $\mathbb{Z}$LIP, have been of great interest in cryptography. Recent advances have been made in building cryptographic primitives based on these problems, as well as in developing new algorithms for solving them. However, the theoretical complexity of $\mathbb{Z}$SVP and $\mathbb{Z}$LIP are still not well understood. In this work, we study the problems on rotations of $\mathbb{Z}^n$ by exploiting the symmetry property. We introduce a randomization framework that can be roughly viewed as `applying random automorphisms’ to the output of an oracle, without accessing the automorphism group. Using this framework, we obtain new reduction results for rotations of $\mathbb{Z}^n$. First, we present a reduction from $\mathbb{Z}$LIP to $\mathbb{Z}$SCVP. Here $\mathbb{Z}$SCVP is the problem of finding the shortest characteristic vectors, which is a special case of CVP where the target vector is a deep hole of the lattice. Moreover, we prove a reduction from $\mathbb{Z}$SVP to $\gamma$-$\mathbb{Z}$SVP for any constant $\gamma = O(1)$ in the same dimension, which implies that $\mathbb{Z}$SVP is as hard as its approximate version for any constant approximation factor. Second, we investigate the problem of finding a nontrivial automorphism for a given lattice, which is called LAP. Specifically, we use the randomization framework to show that $\mathbb{Z}$LAP is as hard as $\mathbb{Z}$LIP. We note that our result can be viewed as a $\mathbb{Z}^n$-analogue of Lenstra and Silverberg's result in [JoC2017], but with a different assumption: they assume the $G$-lattice structure, while we assume the access to an oracle that outputs a nontrivial automorphism.
Mind the TWEAKEY Schedule: Cryptanalysis on SKINNYe-64-256 📺
Designing symmetric ciphers for particular applications becomes a hot topic. At EUROCRYPT 2020, Naito, Sasaki and Sugawara invented the threshold implementation friendly cipher SKINNYe-64-256 to meet the requirement of the authenticated encryption PFB_Plus. Soon, Thomas Peyrin pointed out that SKINNYe-64-256 may lose the security expectation due the new tweakey schedule. Although the security issue of SKINNYe-64-256 is still unclear, Naito et al. decided to introduce SKINNYe-64-256 v2 as a response. In this paper, we give a formal cryptanalysis on the new tweakey schedule of SKINNYe-64-256 and discover unexpected differential cancellations in the tweakey schedule. For example, we find the number of cancellations can be up to 8 within 30 consecutive rounds, which is significantly larger than the expected 3 cancellations. This property is derived by the analysis of the updated functions (LFSRs) of the tweakey via linear algebra. Moreover, we take our new discoveries into rectangle, MITM and impossible differential attacks, and adapt the corresponding automatic tools with new constraints from our discoveries. Finally, we find a 41-round related-tweakey rectangle attack on SKINNYe-64-256 and leave a security margin of 3 rounds only. As STK accepts arbitrary tweakey size, but SKINNY and SKINNYe-64-256 v2 only support up to 4n tweakey size. We introduce a new design of tweakey schedule for SKINNY-64 to further extend the supported tweakey size. We give a formal proof that our new tweakey schedule inherits the security requirement of STK and SKINNY.