International Association for Cryptologic Research

International Association
for Cryptologic Research


Andrew C. Yao


A New Framework for RFID Privacy
Formal RFID security and privacy frameworks are fundamental to the design and analysis of robust RFID systems. In this paper, we develop a new definitional framework for RFID privacy in a rigorous and precise manner. Our framework is based on a zero-knowledge (ZK) formulation [7, 5] and incorporates the notions of adaptive completeness and mutual authentication. We provide meticulous justification of the new framework and contrast it with existing ones in the literature. In particular, we prove that our framework is stronger than the ind-privacy model of [14], which answers an open question posed in [14] for developing stronger RFID privacy models. Along the way we also try to clarify certain confusions and rectify several defects in the existing frameworks. Based on the protocol of [16], we propose an efficient RFID mutual authentication protocol and analyze its security and privacy. The methodology used in our analysis is of independent interest and can be applied to analyze other RFID protocols within the new framework.
Concurrent Knowledge Extraction in the Public-Key Model
Andrew C. Yao Moti Yung Yunlei Zhao
Knowledge extraction is a fundamental notion, modeling machine possession of values (witnesses) in a computational complexity sense and enabling one to argue about the internal state of a party in a protocol without probing its internal secret state. However, when transactions are concurrent (e.g., over the Internet) with players possessing public-keys (as is common in cryptography), assuring that entities ``know" what they claim to know, where adversaries may be well coordinated across different transactions, turns out to be much more subtle and in need of re-examination. Here, we investigate how to formally treat knowledge possession by parties (with registered public-keys) interacting over the Internet. Stated more technically, we look into the relative power of the notion of ``concurrent knowledge-extraction" (CKE) in the concurrent zero-knowledge (CZK) bare public-key (BPK) model where statements being proven can be dynamically and adaptively chosen by the prover. We show the potential vulnerability of man-in-the-middle (MIM) attacks turn out to be a real security threat to existing natural protocols running concurrently in the public-key model, which motivates us to introduce and formalize the notion of CKE, alone with clarification of various subtleties. Then, both generic (based on standard polynomial assumptions), and efficient (employing complexity leveraging in a novel way) implementations for NP are presented for constant-round (in particular, round-optimal) concurrently knowledge-extractable concurrent zero-knowledge (CZK-CKE) arguments in the BPK model. The efficient implementation can be further practically instantiated for specific number-theoretic language.
Adaptive Concurrent Non-Malleability with Bare Public-Keys
Andrew C. Yao Moti Yung Yunlei Zhao
Concurrent non-malleability (CNM) is central for cryptographic protocols running concurrently in environments such as the Internet. In this work, we formulate CNM in the bare public-key (BPK) model, and show that round-e±cient concurrent non-malleable cryptography with full adaptive input selection can be established, in general, with bare public-keys (where, in particular, no trusted assumption is made).


Robert H. Deng (1)
Yingjiu Li (1)
Moti Yung (3)
Yunlei Zhao (3)