## CryptoDB

### Hanlin Liu

#### Publications

**Year**

**Venue**

**Title**

2024

PKC

ReSolveD: Shorter Signatures from Regular Syndrome Decoding and VOLE-in-the-Head
Abstract

We present ReSolveD, a new candidate post-quantum signature scheme under the regular syndrome decoding (RSD) assumption for random linear codes, which is a well-established variant of the well-known syndrome decoding (SD) assumption. Our signature scheme is obtained by designing a new zero-knowledge proof for proving knowledge of a solution to the RSD problem in the recent VOLE-in-the-head framework using a sketching scheme to verify that a vector has weight exactly one. We achieve a signature size of 3.99 KB with a signing time of 27.3 ms and a verification time of 23.1 ms on a single core of a standard desktop for a 128-bit security level. Compared to the state-of-the-art code-based signature schemes, our signature scheme achieves 1.5X ~ 2X improvement in terms of the common “signature size + public-key size” metric, while keeping the computational efficiency competitive.

2024

EUROCRYPT

The Hardness of LPN over Any Integer Ring and Field for PCG Applications
Abstract

Learning parity with noise (LPN) has been widely studied and used in cryptography.
It was recently brought to new prosperity since Boyle et al. (CCS'18), putting LPN to a central role in designing secure multi-party computation, zero-knowledge proofs, private set intersection, and many other protocols. In this paper, we thoroughly studied security of LPN problems in this particular context. We found that some important aspects are long ignored and many conclusions from classical LPN cryptanalysis do not apply to this new setting, due to the low noise rates, extremely high dimensions, various types (in addition to $\FF_2$) and noise distributions.
For LPN over a field, we give a parameterized reduction from exact-noise LPN to regular-noise LPN. Compared to the recent result by Feneuil, Joux and Rivain (Crypto'22), we significantly reduce the security loss by paying only a small additive price in dimension and number of samples.
We analyze the security of LPN over a ring $\ZZ_{2^\lambda}$. Existing protocols based on LPN over integer rings use parameters as if they are over fields, but we found an attack that effectively reduces the weight of a noise by half compared to LPN over fields. Consequently, prior works that use LPN over $\ZZ_{2^\lambda}$ overestimate up to 40 bits of security.
We provide a complete picture of the hardness of LPN over integer rings by showing: 1) the equivalence between its search and decisional versions; 2) an efficient reduction from LPN over $\FF_{2}$ to LPN over $\ZZ_{2^\lambda}$; and 3) generalization of our results to any integer ring.
Finally, we provide an all-in-one estimator tool for the bit security of LPN parameters in the context of PCG, incorporating the recent advanced attacks.

2023

ASIACRYPT

Ramp hyper-invertible matrices and their applications to MPC protocols
Abstract

Beerliov{\'{a}}{-}Trub{\'{\i}}niov{\'{a}} and Hirt introduced hyper-invertible matrix technique to construct the first perfectly secure MPC protocol in the presence of maximal malicious corruptions $\lfloor \frac{n-1}{3} \rfloor$ with linear communication complexity per multiplication gate\cite{BH08}. This matrix allows MPC protocol to generate correct shares of uniformly random secrets in the presence of malicious adversary. Moreover, the amortized communication complexity of generating each sharing is linear. Due to this prominent feature, the hyper-invertible matrix plays an important role in the construction of MPC protocol and zero-knowledge proof protocol where the randomness needs to be jointly generated. However, the downside of this matrix is that the size of its base field is linear in the size of its matrix. This means if we construct an $n$-party MPC protocol over $\F_q$ via hyper-invertible matrix, $q$ is at least $2n$.
In this paper, we propose the ramp hyper-invertible matrix which can be seen as the generalization of hyper-invertible matrix. Our ramp hyper-invertible matrix can be defined over constant-size field regardless of the size of this matrix. Similar to the arithmetic secret sharing scheme, to apply our ramp hyper-invertible matrix to perfectly secure MPC protocol, the maximum number of corruptions has to be compromised to $\frac{(1-\epsilon)n}{3}$. As a consequence, we present the first perfectly secure MPC protocol in the presence of $\frac{(1-\epsilon)n}{3}$ malicious corruptions with constant communication complexity. Besides presenting the variant of hyper-invertible matrix, we overcome several obstacles in the construction of this MPC protocol. Our arithmetic secret sharing scheme over constant-size field is compatible with the player elimination technique, i.e., it supports the dynamic changes of party number and corrupted party number. Moreover, we rewrite the public reconstruction protocol to support the sharings over constant-size field. Putting these together leads to the constant-size field variant of celebrated MPC protocol in \cite{BH08}.
We note that although it was widely acknowledged that there exists an MPC protocol with constant communication complexity by replacing Shamir secret sharing scheme with arithmetic secret sharing scheme, there is no reference seriously describing such protocol in detail. Our work fills the missing detail by providing MPC primitive for any applications relying on MPC protocol of constant communication complexity. As an application of our perfectly secure MPC protocol which implies perfect robustness in the MPC-in-the-Head framework, we present the constant-rate zero-knowledge proof with $3$ communication rounds. The previous work achieves constant-rate with $5$ communication rounds \cite{IKOS07} due to the statistical robustness of their MPC protocol. Another application of our ramp hyper-invertible matrix is the information-theoretic multi-verifier zero-knowledge for circuit satisfiability\cite{YW22}. We manage to remove the dependence of the size of circuit and security parameter from the share size.

2023

ASIACRYPT

Degree-$D$ Reverse Multiplication-Friendly Embeddings: Constructions and Applications
Abstract

In the recent work of (Cheon \& Lee, Eurocrypt'22), the concept of a \emph{degree-$D$ packing method} was formally introduced, which captures the idea of embedding multiple elements of a smaller ring into a larger ring, so that element-wise multiplication in the former is somewhat ``compatible'' with the product in the latter.
Then, several optimal bounds and results are presented, and furthermore, the concept is generalized from one multiplication to degrees larger than two.
These packing methods encompass several constructions seen in the literature in contexts like secure multiparty computation and fully homomorphic encryption.
One such construction is the concept of reverse multiplication-friendly embeddings (RMFEs), which are essentially degree-2 packing methods.
In this work we generalize the notion of RMFEs to \emph{degree-$D$ RMFEs} which, in spite of being ``more algebraic'' than packing methods, turn out to be essentially equivalent.
Then, we present a general construction of degree-$D$ RMFEs by generalizing the ideas on algebraic geometry used to construct traditional degree-$2$ RMFEs which, by the aforementioned equivalence, leads to explicit constructions of packing methods.
Furthermore, our theory is given in a unified manner for general Galois rings, which include both rings of the form $\mathbb{Z}_{p^k}$ and fields like $\mathbb{F}_{p^k}$, which have been treated separately in prior works.
We present multiple concrete sets of parameters for degree-$D$ RMFEs (including $D=2$), which can be useful for future works.
Finally, we discuss interesting applications of our RMFEs, focusing in particular on the case of non-interactively generating high degree correlations for secure multiparty computation protocols.
This requires the use of Shamir secret sharing for a large number of parties, which requires large-degree Galois ring extensions.
Our RMFE enables the generation of such preprocessing data over small rings, without paying for the multiplicative overhead incurred by using Galois ring extensions of large degree.
For our application we also construct along the way, as a side contribution of potential independent interest, a pseudo-random secret-sharing solution for non-interactive generation of packed Shamir-sharings over Galois rings with structured secrets, inspired by the PRSS solutions from (Benhamouda \emph{et al}, TCC 2021).

2022

ASIACRYPT

A Non-heuristic Approach to Time-space Tradeoffs and Optimizations for BKW
📺
Abstract

Blum, Kalai and Wasserman (JACM 2003) gave the first sub-exponential algorithm to solve the Learning Parity with Noise (LPN) problem. In particular, consider the LPN problem with constant noise and dimension $n$. The BKW solves it with space complexity $2^{\frac{(1+\epsilon)n}{\log n}}$ and time/sample complexity $2^{\frac{(1+\epsilon)n}{\log n}}\cdot 2^{\Omega(n^{\frac{1}{1+\epsilon}})}$ for small constant $\epsilon\to 0^+$.
We propose a variant of the BKW by tweaking Wagner's generalized birthday problem (Crypto 2002) and adapting the technique to a $c$-ary tree structure. In summary, our algorithm achieves the following:
\begin{enumerate}
\item {\bf (Time-space tradeoff).} We obtain the same time-space tradeoffs for LPN and LWE as those given by Esser et al. (Crypto 2018), but without resorting to any heuristics. For any $2\leq c\in\mathbb{N}$, our algorithm solves the LPN problem with time complexity $2^{\frac{\log c(1+\epsilon)n}{\log n}}\cdot 2^{\Omega(n^{\frac{1}{1+\epsilon}})}$ and space complexity $2^{\frac{\log c(1+\epsilon)n}{(c-1)\log n}}$, where one can use Grover's quantum algorithm or Dinur et al.'s dissection technique (Crypto 2012) to further accelerate/optimize the time complexity.
\item {\bf (Time/sample optimization).}
A further adjusted variant of our algorithm solves the LPN problem with sample, time and space complexities all kept at $2^{\frac{(1+\epsilon)n}{\log n}}$ for $\epsilon\to 0^+$, saving factor $2^{\Omega(n^{\frac{1}{1+\epsilon}})}$ in time/sample compared to the original BKW, and the variant of Devadas et al. (TCC 2017).
\item {\bf (Sample reduction).} Our algorithm provides an alternative to Lyubashevsky's BKW variant (RANDOM 2005) for LPN with a restricted amount of samples. In particular, given $Q=n^{1+\epsilon}$ (resp., $Q=2^{n^{\epsilon}}$) samples, our algorithm saves a factor of $2^{\Omega(n)/(\log n)^{1-\kappa}}$ (resp., $2^{\Omega(n^{\kappa})}$) for constant $\kappa \to 1^-$ in running time while consuming roughly the same space, compared with Lyubashevsky's algorithm.
\end{enumerate}
In particular, the time/sample optimization benefits from a careful analysis of the error distribution among the correlated candidates, which was not studied by previous rigorous approaches such as the analysis of Minder and Sinclair (J.Cryptology 2012) or Devadas et al. (TCC 2017).

2021

CRYPTO

Pushing the Limits of Valiant's Universal Circuits: Simpler, Tighter and More Compact
📺
Abstract

A universal circuit (UC) is a general-purpose circuit that can simulate arbitrary circuits (up to a certain size $n$). Valiant provides a $k$-way recursive construction of UCs (STOC 1976), where $k$ tunes the complexity of the recursion. More concretely, Valiant gives theoretical constructions of 2-way and 4-way UCs of asymptotic (multiplicative) sizes $5n\log n$ and $4.75 n\log n$ respectively, which matches the asymptotic lower bound $\Omega(n\log n)$ up to some constant factor.
Motivated by various privacy-preserving cryptographic applications, Kiss et al. (Eurocrypt 2016) validated the practicality of $2$-way universal circuits by giving example implementations for private function evaluation. G{\"{u}}nther et al. (Asiacrypt 2017) and Alhassan et al. (J. Cryptology 2020) implemented the 2-way/4-way hybrid UCs with various optimizations in place towards making universal circuits more practical. Zhao et al. (Asiacrypt 2019) optimized Valiant's 4-way UC to asymptotic size $4.5 n\log n$ and proved a lower bound $3.64 n\log n$ for UCs under the Valiant framework.
As the scale of computation goes beyond 10-million-gate ($n=10^7$) or even billion-gate level ($n=10^9$), the constant factor in UCs size plays an increasingly important role in application performance. In this work, we investigate Valiant's universal circuits and present an improved framework for constructing universal circuits with the following advantages.
[Simplicity.] Parameterization is no longer needed. In contrast to that previous implementations resorted to a hybrid construction combining $k=2$ and $k=4$ for a tradeoff between fine granularity and asymptotic size-efficiency, our construction gets the best of both worlds when configured at the lowest complexity (i.e., $k=2$).
[Compactness.] Our universal circuits have asymptotic size $3n\log n$, improving upon the best previously known $4.5n\log n$ by 33\% and beating the $3.64n\log n$ lower bound for UCs constructed under Valiant's framework (Zhao et al., Asiacrypt 2019).
[Tightness.] We show that under our new framework the UCs size is lower bounded by $2.95 n\log n$, which almost matches the $3n\log n$ circuit size of our $2$-way construction.
We implement the 2-way universal circuits and evaluate its performance with other implementations, which confirms our theoretical analysis.

2021

TCHES

Learning Parity with Physical Noise: Imperfections, Reductions and FPGA Prototype
📺
Abstract

Hard learning problems are important building blocks for the design of various cryptographic functionalities such as authentication protocols and post-quantum public key encryption. The standard implementations of such schemes add some controlled errors to simple (e.g., inner product) computations involving a public challenge and a secret key. Hard physical learning problems formalize the potential gains that could be obtained by leveraging inexact computing to directly generate erroneous samples. While they have good potential for improving the performances and physical security of more conventional samplers when implemented in specialized integrated circuits, it remains unknown whether physical defaults that inevitably occur in their instantiation can lead to security losses, nor whether their implementation can be viable on standard platforms such as FPGAs. We contribute to these questions in the context of the Learning Parity with Physical Noise (LPPN) problem by: (1) exhibiting new (output) data dependencies of the error probabilities that LPPN samples may suffer from; (2) formally showing that LPPN instances with such dependencies are as hard as the standard LPN problem; (3) analyzing an FPGA prototype of LPPN processor that satisfies basic security and performance requirements.

2019

ASIACRYPT

Valiant’s Universal Circuits Revisited: An Overall Improvement and a Lower Bound
Abstract

A universal circuit (UC) is a general-purpose circuit that can simulate arbitrary circuits (up to a certain size n). At STOC 1976 Valiant presented a graph theoretic approach to the construction of UCs, where a UC is represented by an edge universal graph (EUG) and is recursively constructed using a dedicated graph object (referred to as supernode). As a main end result, Valiant constructed a 4-way supernode of size 19 and an EUG of size $$4.75n\log n$$ (omitting smaller terms), which remained the most size-efficient even to this day (after more than 4 decades).Motivated by the emerging applications of UCs in various privacy preserving computation scenarios, we revisit Valiant’s universal circuits, and propose a 4-way supernode of size 18, and an EUG of size $$4.5n\log n$$. As confirmed by our implementations, we reduce the size of universal circuits (and the number of AND gates) by more than 5% in general, and thus improve upon the efficiency of UC-based cryptographic applications accordingly. Our approach to the design of optimal supernodes is computer aided (rather than by hand as in previous works), which might be of independent interest. As a complement, we give lower bounds on the size of EUGs and UCs in Valiant’s framework, which significantly improves upon the generic lower bound on UC size and therefore reduces the gap between theory and practice of universal circuits.

#### Coauthors

- Davide Bellizia (1)
- Hongrui Cui (1)
- Daniel Escudero (1)
- Clément Hoffmann (1)
- Cheng Hong (1)
- Zhenkai Hu (1)
- Dina Kamel (1)
- Wenling Liu (1)
- Pierrick Méaux (1)
- François-Xavier Standaert (1)
- Xiao Wang (1)
- Chaoping Xing (2)
- Di Yan (1)
- Yanjiang Yang (1)
- Kang Yang (2)
- Yu Yu (6)
- Chen Yuan (2)
- Kaiyi Zhang (1)
- Jiang Zhang (2)
- Shuoyao Zhao (2)