International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Dina Kamel

Publications

Year
Venue
Title
2022
TCHES
When Bad News Become Good News: Towards Usable Instances of Learning with Physical Errors
Hard physical learning problems have been introduced as an alternative option to implement cryptosystems based on hard learning problems. Their high-level idea is to use inexact computing to generate erroneous computations directly, rather than to first compute correctly and add errors afterwards. Previous works focused on the applicability of this idea to the Learning Parity with Noise (LPN) problem as a first step, and formalized it as Learning Parity with Physical Noise (LPPN). In this work, we generalize it to the Learning With Errors (LWE) problem, formalized as Learning With Physical Errors (LWPE). We first show that the direct application of the design ideas used for LPPN prototypes leads to a new source of (mathematical) data dependencies in the error distributions that can reduce the security of the underlying problem. We then show that design tweaks can be used to avoid this issue, making LWPE samples natively robust against such data dependencies. We additionally put forward that these ideas open a quite wide design space that could make hard physical learning problems relevant in various applications. And we conclude by presenting a first prototype FPGA design confirming our claims.
2022
TCHES
When Bad News Become Good News: Towards Usable Instances of Learning with Physical Errors
Hard physical learning problems have been introduced as an alternative option to implement cryptosystems based on hard learning problems. Their high-level idea is to use inexact computing to generate erroneous computations directly, rather than to first compute correctly and add errors afterwards. Previous works focused on the applicability of this idea to the Learning Parity with Noise (LPN) problem as a first step, and formalized it as Learning Parity with Physical Noise (LPPN). In this work, we generalize it to the Learning With Errors (LWE) problem, formalized as Learning With Physical Errors (LWPE). We first show that the direct application of the design ideas used for LPPN prototypes leads to a new source of (mathematical) data dependencies in the error distributions that can reduce the security of the underlying problem. We then show that design tweaks can be used to avoid this issue, making LWPE samples natively robust against such data dependencies. We additionally put forward that these ideas open a quite wide design space that could make hard physical learning problems relevant in various applications. And we conclude by presenting a first prototype FPGA design confirming our claims.
2021
TCHES
Learning Parity with Physical Noise: Imperfections, Reductions and FPGA Prototype 📺
Hard learning problems are important building blocks for the design of various cryptographic functionalities such as authentication protocols and post-quantum public key encryption. The standard implementations of such schemes add some controlled errors to simple (e.g., inner product) computations involving a public challenge and a secret key. Hard physical learning problems formalize the potential gains that could be obtained by leveraging inexact computing to directly generate erroneous samples. While they have good potential for improving the performances and physical security of more conventional samplers when implemented in specialized integrated circuits, it remains unknown whether physical defaults that inevitably occur in their instantiation can lead to security losses, nor whether their implementation can be viable on standard platforms such as FPGAs. We contribute to these questions in the context of the Learning Parity with Physical Noise (LPPN) problem by: (1) exhibiting new (output) data dependencies of the error probabilities that LPPN samples may suffer from; (2) formally showing that LPPN instances with such dependencies are as hard as the standard LPN problem; (3) analyzing an FPGA prototype of LPPN processor that satisfies basic security and performance requirements.
2011
EUROCRYPT
2011
CHES