## CryptoDB

### Sri AravindaKrishnan Thyagarajan

#### Publications

**Year**

**Venue**

**Title**

2024

CRYPTO

Game-Theoretically Fair Distributed Sampling
Abstract

Cleve's celebrated result (STOC'86) showed that a strongly fair multi-party coin-toss is impossible in the presence of majority-sized coalitions. Recently, however, a fascinating line of work studied a relaxed fairness notion called \emph{game-theoretic fairness}, which guarantees that no coalition should be incentivized to deviate from the prescribed protocol. A sequence of works has explored the feasibility of game-theoretic fairness for \emph{two-sided} coin-toss, and indeed demonstrated feasibility in the dishonest majority setting under standard cryptographic assumptions. In fact, the recent work of Wu, Asharov, and Shi (EUROCRYPT'22) completely characterized the regime where game-theoretic fairness is feasible. However, this line of work is largely restricted to two-sided coin-toss, and more precisely on a \emph{uniform} coin-toss (i.e., Bernoulli with parameter $1/2$). The only exceptions are the works on game-theoretically fair leader election, which can be viewed as a special case of uniform $n$-sided coin-toss where $n$ is the number of parties.
In this work, we \emph{initiate} the comprehensive study of game-theoretic fairness for multi-party \emph{sampling from general distributions}. In particular, for the case of $m$-sided \emph{uniform} coin-toss we give a nearly complete characterization of the regime in which game-theoretic fairness is feasible. Interestingly, contrary to standard fairness notions in cryptography, the composition of game-theoretically fair two-sided coin-toss protocols does not necessarily yield game-theoretically fair multi-sided coins. To circumvent this, we introduce new techniques compatible with game-theoretic fairness.
In particular, we give the following results:
- We give a protocol from standard cryptographic assumptions that achieves game-theoretic fairness for uniform $m$-sided coin-toss against half- or more-sized adversarial coalitions.
- To complement our protocol, we give a general impossibility result that establishes the optimality of our protocol for a broad range of parameters modulo an additive constant. Even in the worst-case, the gap between our protocol and our impossibility result is only a small constant multiplicative factor.
- We also present a game-theoretically fair protocol for \emph{any} efficiently sampleable $m$-outcome distribution in the dishonest majority setting. For instance, even for the case of $m=2$ (i.e., two-sided coin-toss), our result implies a game-theoretically fair protocol for an \emph{arbitrary} Bernoulli coin. In contrast, the work of Wu, Asharov, and Shi only focussed on a Bernoulli coin with parameter $1/2$.

2023

PKC

Transparent Batchable Time-lock Puzzles and Applications to Byzantine Consensus
Abstract

Time-lock puzzles (TLP) are a fascinating type of cryptographic problem that is easy to generate, but takes a certain time to solve, even when arbitrary parallel speedup is allowed. TLPs have wide-ranging applications including fairness, round efficient computation, and more. To reduce the effort needed to solve large numbers of TLPs, prior work has proposed batching techniques to reduce the cost of solving. However, these proposals either require: (1) a trusted setup or (2) the puzzle size be linear in the maximum batch size, which implies setting an a priori bound on the maximum size of the batch. Any of these limitations restrict the utility of TLPs in decentralized and dynamic settings like permissionless blockchains. In this work, we demonstrate the feasibility and usefulness of a TLP that overcomes all the above limitations using indistinguishability obfuscation to show that there are no fundamental barriers to achieving such a TLP construction.
As a main application of our TLP, we show how to improve the resilience of consensus protocols toward network-level adversaries in the following settings: (1) We show a generic compiler that boosts the resilience of a Byzantine broadcast protocol $\Pi$ as follows: if $\Pi$ is secure against $t<n$ weakly adaptive corruptions, then the compiled protocol is secure against $t<n$ strongly adaptive corruptions. Here, `strong' refers to adaptively corrupting a party and deleting messages that it sent while still honest. Our compiler is round and communication preserving, and gives the first expected constant-round Byzantine broadcast protocol against a strongly adaptive adversary for the dishonest majority setting. (2) We adapt the Nakamoto consensus protocol to a weak model of synchrony where the adversary can adaptively create minority partitions in the network. Unlike prior works, we do not assume that all honest messages are delivered within a known upper bound on the message delay. This is the first work to show that it is possible to achieve consensus in the permissionless setting even after relaxing the standard synchrony assumption.

#### Coauthors

- Julian Loss (1)
- Giulio Malavolta (1)
- Kartik Nayak (1)
- Charalampos Papamanthou (1)
- Pratik Soni (1)
- Shravan Srinivasan (1)
- Sri AravindaKrishnan Thyagarajan (2)
- Ke Wu (1)