International Association for Cryptologic Research

International Association
for Cryptologic Research


Mélissa Rossi


Italian Lemma: a Proof
Mario Rossi
We prove the Italian lemma by exploiting the Paired-Italians axiom.
Mitaka: A Simpler, Parallelizable, Maskable Variant of Falcon 📺
This work describes the Mitaka signature scheme: a new hash-and-sign signature scheme over NTRU lattices which can be seen as a variant of NIST finalist Falcon. It achieves comparable efficiency but is considerably simpler, online/offline, and easier to parallelize and protect against side-channels, thus offering significant advantages from an implementation standpoint. It is also much more versatile in terms of parameter selection. We obtain this signature scheme by replacing the FFO lattice Gaussian sampler in Falcon by the “hybrid” sampler of Ducas and Prest, for which we carry out a detailed and corrected security analysis. In principle, such a change can result in a substantial security loss, but we show that this loss can be largely mitigated using new techniques in key generation that allow us to construct much higher quality lattice trapdoors for the hybrid sampler relatively cheaply. This new approach can also be instantiated on a wide variety of base fields, in contrast with Falcon's restriction to power-of-two cyclotomics. We also introduce a new lattice Gaussian sampler with the same quality and efficiency, but which is moreover compatible with the integral matrix Gram root technique of Ducas et al., allowing us to avoid floating point arithmetic. This makes it possible to realize the same signature scheme as Mitaka efficiently on platforms with poor support for floating point numbers. Finally, we describe a provably secure masking of Mitaka. More precisely, we introduce novel gadgets that allow provable masking at any order at much lower cost than previous masking techniques for Gaussian sampling-based signature schemes, for cheap and dependable side-channel protection.
The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon
FALCON is a very efficient and compact lattice-based signature finalist of the NIST’s Post-Quantum standardization campaign. This work assesses Falcon’s sidechannel resistance by analyzing two vulnerabilities, namely the pre-image computation and the trapdoor sampling. The first attack is an improvement of Karabulut and Aysu (DAC 2021). It overcomes several difficulties inherent to the structure of the stored key like the Fourier representation and directly recovers the key with a limited number of traces and a reduced complexity. The main part of this paper is dedicated to our second attack: we show that a simple power analysis during the signature execution could provide the exact value of the output of a subroutine called the base sampler. This intermediate value does not directly lead to the secret and we had toadapt the so-called hidden parallelepiped attack initially introduced by Nguyen and Regev in Eurocrypt 2006 and reused by Ducas and Nguyen in Asiacrypt 2012. We extensively quantify the resources for our attacks and experimentally demonstrate them with FALCON’s reference implementation on the ELMO simulator (McCann, Oswald and Whitnall USENIX 2017) and on a ChipWhisperer Lite with STM32F3 target (ARM Cortex M4).These new attacks highlight the need for side-channel protection for one of the three finalists of NIST’s standardization campaign by pointing out the vulnerable parts and quantifying the resources of the attacks.
(One) failure is not an option: Bootstrapping the search for failures in lattice-based encryption schemes 📺
Lattice-based encryption schemes are often subject to the possibility of decryption failures, in which valid encryptions are decrypted incorrectly. Such failures, in large number, leak information about the secret key, enabling an attack strategy alternative to pure lattice reduction. Extending the "failure boosting" technique of D'Anvers et al. in PKC 2019, we propose an approach that we call "directional failure boosting" that uses previously found "failing ciphertexts" to accelerate the search for new ones. We analyse in detail the case where the lattice is defined over polynomial ring modules quotiented by <X^N + 1> and demonstrate it on a simple Mod-LWE-based scheme parametrized à la Kyber768/Saber. We show that, using our technique, for a given secret key (single-target setting), the cost of searching for additional failing ciphertexts after one or more have already been found, can be sped up dramatically. We thus demonstrate that, in this single-target model, these schemes should be designed so that it is hard to even obtain one decryption failure. Besides, in a wider security model where there are many target secret keys (multi-target setting), our attack greatly improves over the state of the art.
LWE with Side Information: Attacks and Concrete Security Estimation 📺
We propose a framework for cryptanalysis of lattice-based schemes, when side information --in the form of "hints''-- about the secret and/or error is available. Our framework generalizes the so-called primal lattice reduction attack, and allows the progressive integration of hints before running a final lattice reduction step. Our techniques for integrating hints include sparsifying the lattice, projecting onto and intersecting with hyperplanes, and/or altering the distribution of the secret vector. Our main contribution is to propose a toolbox and a methodology to integrate such hints into lattice reduction attacks and to predict the performance of those lattice attacks with side information. While initially designed for side-channel information, our framework can also be used in other cases: exploiting decryption failures, or simply exploiting constraints imposed by certain schemes (LAC, Round5, NTRU), that were previously not known to (slightly) benefit from lattice attacks. We implement a Sage 9.0 toolkit to actually mount such attacks with hints when computationally feasible, and to predict their performances on larger instances. We provide several end-to-end application examples, such as an improvement of a single trace attack on Frodo by Bos et al (SAC 2018). Contrary to ad-hoc practical attacks exploiting side-channel leakage, our work is a generic way to estimate security loss even given very little side-channel information.
On the Concrete Security of Goldreich’s Pseudorandom Generator
Local pseudorandom generators allow to expand a short random string into a long pseudo-random string, such that each output bit depends on a constant number d of input bits. Due to its extreme efficiency features, this intriguing primitive enjoys a wide variety of applications in cryptography and complexity. In the polynomial regime, where the seed is of size n and the output of size $$n^{\textsf {s}}$$ for $$\textsf {s}> 1$$ , the only known solution, commonly known as Goldreich’s PRG, proceeds by applying a simple d-ary predicate to public random size-d subsets of the bits of the seed.While the security of Goldreich’s PRG has been thoroughly investigated, with a variety of results deriving provable security guarantees against class of attacks in some parameter regimes and necessary criteria to be satisfied by the underlying predicate, little is known about its concrete security and efficiency. Motivated by its numerous theoretical applications and the hope of getting practical instantiations for some of them, we initiate a study of the concrete security of Goldreich’s PRG, and evaluate its resistance to cryptanalytic attacks. Along the way, we develop a new guess-and-determine-style attack, and identify new criteria which refine existing criteria and capture the security guarantees of candidate local PRGs in a more fine-grained way.
A Side-Channel Assisted Cryptanalytic Attack Against QcBits
QcBits is a code-based public key algorithm based on a problem thought to be resistant to quantum computer attacks. It is a constant-time implementation for a quasi-cyclic moderate density parity check (QC-MDPC) Niederreiter encryption scheme, and has excellent performance and small key sizes. In this paper, we present a key recovery attack against QcBits. We first used differential power analysis (DPA) against the syndrome computation of the decoding algorithm to recover partial information about one half of the private key. We then used the recovered information to set up a system of noisy binary linear equations. Solving this system of equations gave us the entire key. Finally, we propose a simple but effective countermeasure against the power analysis used during the syndrome calculation.

Program Committees

CHES 2022
PKC 2021