International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Emmanuelle Dottax

Publications

Year
Venue
Title
2009
EPRINT
On Second-Order Fault Analysis Resistance for CRT-RSA Implementations
Since their publication in 1996, Fault Attacks have been widely studied from both theoretical and practical points of view and most of cryptographic systems have been shown vulnerable to this kind of attacks. Until recently, most of the theoretical fault attacks and countermeasures used a fault model which assumes that the attacker is able to disturb the execution of a cryptographic algorithm only once. However, this approach seems too restrictive since the publication in 2007 of the successful experiment of an attack based on the injection of two faults, namely a second-order fault attack. Amongst the few papers dealing with second-order fault analysis, three countermeasures were published at WISTP'07 and FDTC'07 to protect the RSA cryptosystem using the CRT mode. In this paper, we analyse the security of these countermeasures with respect to the second-order fault model considered by their authors. We show that these countermeasures are not intrinsically resistant and we propose a new method allowing us to implement a CRT-RSA that resists to this kind of second-order fault attack.
2008
FSE
2008
EPRINT
Block Ciphers Implementations Provably Secure Against Second Order Side Channel Analysis
Matthieu Rivain Emmanuelle Dottax Emmanuel Prouff
In the recent years, side channel analysis has received a lot of attention, and attack techniques have been improved. Side channel analysis of second order is now successful in breaking implementations of block ciphers supposed to be effectively protected. This progress shows not only the practicability of second order attacks, but also the need for provably secure countermeasures. Surprisingly, while many studies have been dedicated to the attacks, only a few papers have been published about the dedicated countermeasures. In fact, only the method proposed by Schramm and Paar at CT-RSA 2006 enables to thwart second order side channel analysis. In this paper, we introduce two new methods which constitute a worthwhile alternative to Schramm and Paar's proposition. We prove their security in a strong security model and we exhibit a way to signifficantly improve their efficiency by using the particularities of the targeted architectures. Finally, we argue that the introduced methods allow to efficiently protect a wide variety of block ciphers, including AES.
2006
EPRINT
Perturbing and Protecting a Traceable Block Cipher
Julien Bringer Hervé Chabanne Emmanuelle Dottax
At the Asiacrypt 2003 conference Billet and Gilbert introduce a block cipher, which, to quote them, has the following paradoxical traceability properties: it is computationally easy to derive many equivalent distinct descriptions of the same instance of the block cipher; but it is computationally difficult, given one or even up to $k$ of them, to recover the so-called meta-key from which they were derived, or to find any additional equivalent description, or more generally to forge any new untraceable description of the same instance of the block cipher. Their construction relies on the Isomorphism of Polynomials (IP) problem. We here show how to strengthen this construction against algebraic attacks by concealing the underlying IP problems. Our modification is such that our description of the block cipher now does not give the expected results all the time and parallel executions are used to obtain the correct value.
2006
EPRINT
White Box Cryptography: Another Attempt
Julien Bringer Hervé Chabanne Emmanuelle Dottax
At CMS 2006 Bringer et al. show how to conceal the algebraic structure of a ``traceable block cipher'' by adding perturbations to its description. We here exploit and strengthen their ideas by further perturbing the representation of a cipher towards a white box implementation. Our technique is quite general, and we apply it -- as a challenging example in the domain of white box cryptography -- to a variant of the block cipher AES.
2005
EPRINT
HB++: a Lightweight Authentication Protocol Secure against Some Attacks
Julien Bringer Hervé Chabanne Emmanuelle Dottax
At Crypto'05, Juels and Weis introduce HB+, an enhancement of the Hopper and Blum (HB) authentication protocol. This protocol HB+ is proven secure against active attacks, though preserving HB's advantages: mainly, requiring so few resources to run that it can be implemented on an RFID tag. However, in a wider adversarial model, Gilbert, Robshaw and Sibert exhibit a very effective attack against HB+. We here show how a modification of the HB+ protocol thwarts Gilbert et al's attack. The resulting protocol, HB++, remains a good candidate for RFID tags authentication.
2004
EPRINT
Electromagnetic Side Channels of an FPGA Implementation of AES
We show how to attack an FPGA implementation of AES where all bytes are processed in parallel using differential electromagnetic analysis. We first focus on exploiting local side channels to isolate the behaviour of our targeted byte. Then, generalizing the Square attack, we describe a new way of retrieving information, mixing algebraic properties and physical observations.
2004
EPRINT
Grey Box Implementation of Block Ciphers Preserving the Confidentiality of their Design
Vincent Carlier Hervé Chabanne Emmanuelle Dottax
In 1997,Patarin and Goubin introduce new asymmetric cryptosystems based on the difficulty of recovering two systems of multivariate polynomials from their composition. We make a different use of this difficult algorithmic problem to obtain a way of representing block ciphers concealing their design but still leaving them executable. We show how to implement our solution with Field Programmable Gate Array. Finally, we give a compact representation of our solution using Binary Decision Diagrams.

Program Committees

CHES 2011